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Abstract

We study asymptotics of the recurrence coefficients of orthogonal polynomials associated to

the generalized Jacobi weight, which is a weight function with a finite number of algebraic

singularities on ½�1; 1�: The recurrence coefficients can be written in terms of the solution of

the corresponding Riemann–Hilbert (RH) problem for orthogonal polynomials. Using the

steepest descent method of Deift and Zhou, we analyze the RH problem, and obtain complete

asymptotic expansions of the recurrence coefficients. We will determine explicitly the order 1=n

terms in the expansions. A critical step in the analysis of the RH problem will be the local

analysis around the algebraic singularities, for which we use Bessel functions of appropriate

order. In addition, the RH approach gives us also strong asymptotics of the orthogonal

polynomials near the algebraic singularities in terms of Bessel functions.

r 2003 Published by Elsevier Inc.
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1. Introduction

We consider the generalized Jacobi weight

wðxÞ ¼ ð1 � xÞað1 þ xÞbhðxÞ
Yp

n¼1

jx � xnj2ln ; for xAð�1; 1Þ; ð1:1Þ
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where p is a fixed number, with

�1ox1ox2o?oxpo1; 2ln4� 1; lna0; a; b4� 1;

and with h real analytic and strictly positive on ½�1; 1�: The points x1;y; xp are

called the algebraic singularities of the weight. Throughout the paper we use x0 ¼ �1
and xpþ1 ¼ 1; for notational convenience. All the moments of w exist so that we have

a sequence of orthogonal polynomials. Denote the nth degree orthonormal
polynomial with respect to the generalized Jacobi weight by pnðzÞ ¼ gnzn þ?;
where gn40: These orthonormal polynomials satisfy a three term recurrence relation

xpnðxÞ ¼ anþ1pnþ1ðxÞ þ bnpnðxÞ þ anpn�1ðxÞ;

and we will investigate the asymptotic behavior of the recurrence coefficients an and
bn as n-N: The generalized Jacobi weight has been studied before from other
points of view in [2,10,20,21] among others.

For the pure Jacobi weight ð1 � xÞað1 þ xÞb exact expressions are known for the
associated recurrence coefficients an and bn; see [4,19]. The asymptotic behavior is
given by

an ¼ 1

2
þ Oð1=n2Þ; bn ¼ Oð1=n2Þ; as n-N:

In a previous paper with Kuijlaars et al. [16], we considered the modified Jacobi

weight ð1 � xÞað1 þ xÞbhðxÞ: There, we were able to obtain complete asymptotic
expansions of the associated recurrence coefficients in powers of 1=n: It turned out
that, as for the pure Jacobi weight, the order 1=n terms in the expansions vanished.
The asymptotic behavior of the recurrence coefficients of orthogonal polynomials
associated to the generalized Jacobi weight (1.1) has been studied before by Golinskii
[13]. He has proven that

an ¼ 1

2
þ Oð1=nÞ; bn ¼ Oð1=nÞ; as n-N: ð1:2Þ

In this paper we will give stronger asymptotics. We will prove that the Oð1=nÞ
terms in (1.2) can be developed into complete asymptotic expansions in
powers of 1=n: Here, in contrast with the (modified) Jacobi weight, the order 1=n

terms in the expansions will not vanish and we will determine an explicit expression
for them.

Our approach is based on the characterization of orthogonal polynomials via a
Riemann–Hilbert problem, due to Fokas et al. [11], and on an application of the
steepest descent method for Riemann–Hilbert problems of Deift and Zhou [9]. We
have already applied this technique to the modified Jacobi weight [16], and in our
case, the general scheme is the same. The main difference lies in the fact that we now
have to do a local analysis around the algebraic singularities as well (not just only
around the endpoints 71), which will be done with (modified) Bessel functions of
appropriate order. In the present paper, we will emphasize the construction of the
local parametrix near the algebraic singularities, which is new. It will turn out that
the order 1=n terms in the expansions of the recurrence coefficients come from this

ARTICLE IN PRESS
M. Vanlessen / Journal of Approximation Theory 125 (2003) 198–237 199



parametrix. The RH approach has been applied before to orthogonal polynomials,
see [3,6–8,14–16]. Our result is the following.

Theorem 1.1. The recurrence coefficients an and bn of orthogonal polynomials

associated to the generalized Jacobi weight ð1:1Þ have a complete asymptotic expansion

of the form

anB
1

2
þ
XN
k¼1

AkðnÞ
nk

; bnB
XN
k¼1

BkðnÞ
nk

; ð1:3Þ

as n-N: The coefficients AkðnÞ and BkðnÞ are explicitly computable for every k; and

the coefficients with the 1=n term in the expansions are given by

A1ðnÞ ¼ �1

2

Xp

n¼1

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q
cosð2n arccos xn � FnÞ; ð1:4Þ

B1ðnÞ ¼ �
Xp

n¼1

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q
cosðð2n þ 1Þ arccos xn � FnÞ; ð1:5Þ

where

Fn ¼ aþ ln þ
Xp

k¼nþ1

2lk

 !
p� aþ bþ

Xp

k¼1

2lk

 !
arccos xn

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

p
p

_
1

�1

log hðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p dt

t � xn
: ð1:6Þ

The integral in ð1:6Þ is a Cauchy principal value integral.

This theorem shows that nð2an � 1Þ and nbn are oscillatory and asymptotically
behave like a superposition of p wave functions An cosðonn � fnÞ with amplitudes

An ¼ �ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

p
; frequencies on ¼ 2 arccos xn; and phase shifts fn which are

different for nð2an � 1Þ and nbn: The amplitude An depends on the location and the
strength of the singularity xn; while the frequency on depends only on the location of
xn: The strengths of the other singularities has influence on the phase shift fn: This
discussion shows that the Oð1=nÞ behavior of the recurrence coefficients is intimately
related to the behavior of our weight near the singularities. Note that if we have no
singularities (i.e. l1 ¼ ? ¼ lp ¼ 0) all the amplitudes in the wave functions vanish.

This implies that the order 1=n terms in the expansions of the recurrence coefficients
vanish, which is in agreement with the case of the modified Jacobi weight [16].

Remark 1.2. We have restricted ourselves to determine only the order 1=n terms in
the expansions of the recurrence coefficients. It is possible to determine the higher-
order terms in the same way if we work hard enough, but the calculations will be a
mess.
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We will now compare our result with a conjecture of Magnus [17] about the
asymptotic behavior of the recurrence coefficients of orthogonal polynomials
associated to the weight

wðxÞ ¼ Bð1 � xÞað1 þ xÞbðx1 � xÞ2l; for xAð�1; x1Þ;
Að1 � xÞað1 þ xÞbðx � x1Þ2l; for xAðx1; 1Þ;

(
ð1:7Þ

where A and B are positive constants, with �1ox1o1; where a; b4� 1 and where
2l4� 1: This weight allows a jump at x1; and is of form (1.1) only if A ¼ B: The
conjecture is the following.

Conjecture of Magnus [17]. The recurrence coefficients of orthogonal polynomials
associated to the weight (1.7) satisfy

an ¼ 1

2
� M

n
cosð2n arccos x1 � 4m logð4n sin arccos x1Þ � FÞ þ oð1=nÞ; ð1:8Þ

bn ¼ � 2M

n
cosðð2n þ 1Þ arccos x1 � 4m logð4n sin arccos x1Þ � FÞ þ oð1=nÞ; ð1:9Þ

as n-N: Here

m ¼ 1

2p
logðB=AÞ; M ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ m2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

1

q
; ð1:10Þ

F ¼ ðaþ lÞp� ðaþ bþ 2lÞ arccos x1 � 2 arg Gðlþ imÞ � argðlþ imÞ: ð1:11Þ

We want to show that, as a consequence of Theorem 1.1, the conjecture is true for
the case A ¼ B: To this end, we need to reformulate the conjecture for this case. If

A ¼ B we have by (1.10) and (1.11) that m ¼ 0; M ¼ ðjlj=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

1

q
; and

F ¼
ðaþ lÞp� ðaþ bþ 2lÞ arccos x1; if l40;

ðaþ lÞp� ðaþ bþ 2lÞ arccos x1 � 3p; if lo0:

	

Inserting this into (1.8) and (1.9) the conjecture becomes.

Conjecture of Magnus for the case A ¼ B. The recurrence coefficients of orthogonal

polynomials associated to the weight Að1 � xÞað1 þ xÞbjx � x1j2l satisfy

an ¼ 1

2
� l

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

1

q
cosð2n arccos x1 � #FÞ þ oð1=nÞ;

bn ¼ �l
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

1

q
cosðð2n þ 1Þ arccos x1 � #FÞ þ oð1=nÞ;

as n-N; where #F ¼ ðaþ lÞp� ðaþ bþ 2lÞ arccos x1:
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If we apply Theorem 1.1 for the case p ¼ 1 and h ¼ A; and using the fact that, see
[12],

_
1

�1

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p dt

t � x1
¼ 0;

we see that the conjecture is true for the case A ¼ B: We even have more since we
were able to obtain complete asymptotic expansions of the recurrence coefficients,
allow the analytic factor h; and allow more singularities. The full conjecture
(i.e. AaB) remains open.

We will also compare our result with Nevai’s result [18] for an even positive weight

rðxÞjxj2l on ½�1; 1� with r and r0 continuous and with 2l4� 1: Nevai showed in
[18] that the recurrence coefficient an of orthogonal polynomials associated to this
weight satisfies,

an ¼ 1

2
þ ð�1Þnþ1 l

2n
þ oð1=nÞ; as n-N: ð1:12Þ

We apply Theorem 1.1 to the weight wðxÞ ¼ ð1 � x2ÞahðxÞjxj2l1 ; with h even. So, w is
of the form of Nevai’s weight. Using the fact that h is even and x1 ¼ 0; we have

_
1

�1

log hðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p dt

t � x1
¼ 0

since the integrand is an odd function. Since p ¼ 1; a ¼ b; and arccos x1 ¼ p=2 this
implies by (1.6) that the phase constant F1 vanishes. From (1.3) and (1.4) we then
have

an ¼ 1

2
þ ð�1Þnþ1l1

2n
þ Oð1=n2Þ; as n-N:

This is in agreement with Nevai’s result, see (1.12). The error is stronger since we

have Oð1=n2Þ instead of oð1=nÞ: However, here we are dealing with an even weight of

the form rðxÞjxj2l with r analytic, and Nevai’s weights also include cases where r is

non-analytic. Nevai also showed that the error is Oð1=n2Þ if r is constant. Note, since
the phase constant F1 vanishes, that by (1.5) the order 1=n term in the expansion of
bn vanishes. This is in agreement with the fact that bn ¼ 0 for an even weight.

From our analysis we are also able to determine strong asymptotics of the
orthonormal polynomials pn: In particular we are interested in the asymptotics near
the singularities. The result is the following.

Theorem 1.3. Fix nAf1;y; pg: There exists d40 so that for xAðxn; xn þ dÞ

pnðxÞ ¼
ðnynÞ1=2ffiffiffiffiffiffiffiffiffiffi

wðxÞ
p

ð1 � x2Þ1=4

� ½ð1 þ Oð1=nÞÞðcos z1ðxÞJln�1
2
ðnynÞ þ sin z1ðxÞJlnþ1

2
ðnynÞÞ

þ Oð1=nÞðcos z2ðxÞJln�1
2
ðnynÞ þ sin z2ðxÞJlnþ1

2
ðnynÞÞ�; ð1:13Þ
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as n-N; with yn ¼ arccos xn � arccos x; and with Jn the usual J-Bessel function of

order n: The error terms hold uniformly for xAðxn;xn þ dÞ and have a full asymptotic

expansion in powers of 1=n; which can be calculated explicitly. In ð1:13Þ;

z1;2ðxÞ ¼ 7
1

2
arccos x þ cnðxÞ �

lnp
2

þ n arccos xn �
p
4
; ð1:14Þ

where the þ holds for z1; the � for z2; and where cn is given by

cnðxÞ ¼ � 1

2
aþ

Xp

k¼nþ1

2lk

 !
p� aþ bþ

Xp

k¼1

2lk

 !
arccos x

"

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

p
_
1

�1

log hðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p dt

t � x

#
: ð1:15Þ

The integral in ð1:15Þ is a Cauchy principal value integral.

The present paper is organized as follows. In Section 2 we formulate the theory of
orthogonal polynomials as a RH problem for Y : In Section 3, we do the asymptotic
analysis of this RH problem. There, we want to obtain, via a series of
transformations Y/T/S/R; a RH problem for R with a jump matrix close to
the identity matrix. Then, R is also close to the identity matrix. For the last
transformation S/R we have to do a local analysis near the endpoints and
near the algebraic singularities. The local analysis near the endpoints has
already been done in [16], but near the algebraic singularities it is new and
will be done in Section 4. In Section 5 we determine a complete asymptotic
expansion of the jump matrix for R: As a result, we obtain a complete asymptotic
expansion of R; which will be used to prove Theorem 1.1. In the last section we
determine the asymptotics of the orthonormal polynomials near the algebraic
singularities.

2. RH problem for Y

In this section we will characterize the orthogonal polynomials via a 2� 2 matrix
valued RH problem. This characterization is due to Fokas et al. [11]. We will also write
down the recurrence coefficients an and bn in terms of the solution of this RH problem.

We seek a 2 � 2 matrix valued function YðzÞ ¼ Y ðz; n;wÞ that satisfies the
following RH problem.

RH problem for Y .

(a) YðzÞ is analytic for zAC\½�1; 1�:
(b) Y possesses continuous boundary values for xAð�1; 1Þ\fx1;y; xpg denoted by

YþðxÞ and Y�ðxÞ; where YþðxÞ and Y�ðxÞ denote the limiting values of Yðz0Þ as
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z0 approaches x from above and below, respectively, and

YþðxÞ ¼ Y�ðxÞ
1 wðxÞ
0 1

� 

; for xAð�1; 1Þ\fx1;y; xpg: ð2:1Þ

(c) YðzÞ has the following asymptotic behavior at infinity:

YðzÞ ¼ ðI þ Oð1=zÞÞ
zn 0

0 z�n

� 

; as z-N: ð2:2Þ

(d) YðzÞ has the following behavior near z ¼ 1:

YðzÞ ¼

O
1 jz � 1ja

1 jz � 1ja
� 


; if ao0;

O
1 log jz � 1j
1 log jz � 1j

� 

; if a ¼ 0;

O
1 1

1 1

� 

; if a40;

8>>>>>>>><
>>>>>>>>:

ð2:3Þ

as z-1; zAC\½�1; 1�:
(e) YðzÞ has the following behavior near z ¼ �1:

YðzÞ ¼

O
1 jz þ 1jb

1 jz þ 1jb

 !
; if bo0;

O
1 log jz þ 1j
1 log jz þ 1j

� 

; if b ¼ 0;

O
1 1

1 1

� 

; if b40;

8>>>>>>>>><
>>>>>>>>>:

ð2:4Þ

as z-� 1; zAC\½�1; 1�:
(f) YðzÞ has the following behavior near z ¼ xn; for every n ¼ 1;y; p:

YðzÞ ¼
O

1 jz � xnj2ln

1 jz � xnj2ln

 !
; if lno0;

O
1 1

1 1

� 

; if ln40;

8>>>><
>>>>:

ð2:5Þ

as z-xn; zAC\½�1; 1�:

Remark 2.1. The O-terms in (2.3)–(2.5) are to be taken entrywise. So for example

YðzÞ ¼ O 1 jz�1ja
1 jz�1ja
� �

means that Y11ðzÞ ¼ Oð1Þ; Y12ðzÞ ¼ Oðjz � 1jaÞ; etc.
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If we take care of the algebraic singularities xn of the generalized Jacobi weight in
the same way as of the endpoints 71 in [16, Section 2] we obtain the following
theorem.

Theorem 2.2. The RH problem for Y has a unique solution Y ðzÞ ¼ Yðz; n;wÞ given by,

Y ðzÞ ¼
pnðzÞ

1

2pi

R 1

�1

pnðxÞwðxÞ
x � z

dx

�2pig2n�1pn�1ðzÞ �g2n�1

R 1

�1

pn�1ðxÞwðxÞ
x � z

dx

0
BB@

1
CCA; ð2:6Þ

where pn is the monic polynomial of degree n orthogonal with respect to the weight w

and with gn the leading coefficient of the orthonormal polynomial pn:

The recurrence coefficients an and bn can be written in terms of Y ; see [5,7,11,16].
It is known [5] that

a2
n ¼ lim

z-N

z2Y12ðz; n;wÞY21ðz; n;wÞ; ð2:7Þ

bn ¼ lim
z-N

ðz � Y11ðz; n þ 1;wÞY22ðz; n;wÞÞ: ð2:8Þ

So, in order to determine the asymptotics of the recurrence coefficients, we need to
do an asymptotic analysis of the RH problem for Y :

3. Asymptotic analysis of the RH problem for Y

In this section we will do the asymptotic analysis of the RH problem for Y : The
idea is to obtain, via a series of transformations

Y/T/S/R;

a RH problem for R which is normalized at infinity (i.e. RðzÞ-I as z-N) and
whose jump matrix is close to the identity matrix. As a result, the solution of the RH
problem for R is also close to the identity matrix, cf. [5,7].

As mentioned in the introduction, we point out that the asymptotic analysis is
analogous as in the case of the modified Jacobi weight, see [16]. The main differences,
which come from the algebraic singularities, are:

* In every step we have to take care of the growth condition near the algebraic
singularities, which was included in the RH problem for Y to control the behavior
near these points.

* In the second transformation T-S the lens will be opened going through the
algebraic singularities.

* We have to do a local analysis around the algebraic singularities, not just only
around the endpoints. This is a new and critical step in the analysis of the RH
problem for Y ; and is the most important difference with the case of the modified
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Jacobi weight. To emphasize this, the construction of the parametrix near the
algebraic singularities will be done in a separate section.

3.1. First transformation Y/T

We will first transform the RH problem for Y into a RH problem for T whose
solution is bounded at infinity, and whose jump matrix has oscillatory diagonal

entries. Let jðzÞ ¼ z þ ðz2 � 1Þ1=2 be the conformal mapping that maps C\½�1; 1�
onto the exterior of the unit circle, and define

TðzÞ ¼ 2ns3YðzÞjðzÞ�ns3 ; for zAC\½�1; 1�; ð3:1Þ

where s3 ¼ 1 0
0 �1

� �
is the Pauli matrix. With Pauli’s notation xs3 we mean

xs3 ¼
x 0

0 x�1

� 

;

for some scalar x: Then, T is the unique solution of the following equivalent RH
problem, cf. [16, Section 3].

RH problem for T.

(a) TðzÞ is analytic for zAC\½�1; 1�:
(b) TðzÞ satisfies the following jump relation on ð�1; 1Þ\fx1;y; xpg:

TþðxÞ ¼ T�ðxÞ
jþðxÞ

�2n
wðxÞ

0 j�ðxÞ
�2n

 !
; for xAð�1; 1Þ\fx1;y; xpg: ð3:2Þ

(c) TðzÞ has the following behavior at infinity:

TðzÞ ¼ I þ Oð1=zÞ; as z-N: ð3:3Þ

(d) TðzÞ has the same behavior as Y ðzÞ as z-1; given by (2.3).
(e) TðzÞ has the same behavior as Y ðzÞ as z-� 1; given by (2.4).
(f) TðzÞ has the same behavior as Y ðzÞ as z-xn; given by (2.5), for every

n ¼ 1;y; p:

Remark 3.1. Condition (c) states that the RH problem for T is normalized at
infinity. Since jj7ðxÞj ¼ 1 for xAð�1; 1Þ we have by (3.2) oscillatory diagonal entries

in the jump matrix for T :

3.2. Second transformation T-S

We use the steepest descent method for RH problems of Deift and Zhou [9] to
remove the oscillatory behavior in (3.2). See [5,8] for an introduction. The idea is to
deform the contour so that the oscillatory diagonal entries in the jump matrix for T

are transformed into exponentially decaying off-diagonal entries. We then arrive at
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an equivalent RH problem for S on a lens shaped contour, with jumps that converge
to the identity matrix on the lips of the lens, as n-N: This step is referred to as the
opening of the lens.

Since h is real analytic and strictly positive on ½�1; 1�; there is a neighborhood U of
½�1; 1� so that h has an analytic continuation to U ; and so that the real part of h is

strictly positive on U : Hence, the factor ð1 � xÞað1 þ xÞbhðxÞ has a non-vanishing
analytic continuation to zAU\ðð�N;�1�,½1;NÞÞ; given by

ð1 � zÞað1 þ zÞbhðzÞ;

with principal branches of powers.

To continuate the factor jx � xnj2ln analytically, where nAf1;y; pg; we divide the

complex plane into two regions, which we denote by K l
xn

and K r
xn
; separated by a

contour Gxn going through xn; see Fig. 1. Here, K l
xn

and K r
xn

are the sets of all points

on the left, respectively right, of Gxn : We choose the contour Gxn so that the images of
Gxn-Cþ and Gxn-C�; under the mapping j; are the straight rays, restricted to the
exterior of the unit circle, with arguments arccos xn and �arccos xn; respectively.
Here, Cþ is used to denote the upper half-plane fz j Im z40g; and C� to denote the
lower half-plane fz j Im zo0g: It turns out that Gxn is a hyperbola and goes vertically

through xn: We have made an exact plot of Gxn for the case xn ¼ 1
2
; see Fig. 1. For

n ¼ 1;y; p; the factor jx � xnj2ln has an analytic continuation to zAC\Gxn ; given by

ðxn � zÞ2ln ; for zAK l
xn
;

ðz � xnÞ2ln ; for zAK r
xn
;

(

with again principal branches of powers.
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Fig. 1. The contour Gxn for the case xn ¼ 1
2
: The star marks xn; and K l

xn
and Kr

xn
are the sets of all points on

the left, respectively right, of Gxn :
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Remark 3.2. It seems a bit awkward to work with this choice of Gxn instead of with
the vertical line going through xn; but in Section 4.2 this will become clear.

As a result, the generalized Jacobi weight w; given by (1.1), has a non-vanishing

analytic continuation to zAU\ðð�N;�1�,½1;NÞ,½
Sp

n¼1 Gxn �Þ; also denoted by w;

given by

wðzÞ ¼ ð1 � zÞað1 þ zÞbhðzÞ

�
Yn
k¼1

ðz � xkÞ2lk
Yp

l¼nþ1

ðxl � zÞ2ll ; if zAK r
xn
-K l

xnþ1
; ð3:4Þ

where n ¼ 0;y; p; and K r
x0

¼ K l
xpþ1

¼ C:

Remark 3.3. Note that only if lnAN the analytic continuation of our weight is also
analytic across the contour Gxn :

The jump matrix (3.2) for T has the following factorization into a product of three
matrices, based on the fact that jþðxÞj�ðxÞ ¼ 1 for xAð�1; 1Þ;

jþðxÞ
�2n

wðxÞ
0 j�ðxÞ

�2n

 !
¼

1 0

wðxÞ�1j�ðxÞ
�2n 1

� 

0 wðxÞ

�wðxÞ�1 0

 !

�
1 0

wðxÞ�1jþðxÞ
�2n 1

� 

: ð3:5Þ

We note that 1=w does not have an analytic extension to a full neighborhood
of ð�1; 1Þ: Instead, it has an analytic continuation to a neighborhood of ðxn; xnþ1Þ;
for every n ¼ 0;y; p; where x0 ¼ �1 and xpþ1 ¼ 1: We thus transform the RH

problem for T into a RH problem for S with jumps on the oriented contour S;
shown in Fig. 2, that goes through the algebraic singularities xn: The precise form
of the lens S will be determined in Section 4.2. Of course it will be contained in U :
We write

So ¼ S\f�1; x1;y; xp; 1g:
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Let us define, as in [16, Section 4],

SðzÞ ¼

TðzÞ; for z outside the lens;

TðzÞ
1 0

�wðzÞ�1jðzÞ�2n 1

� 

; for z in the upper parts

of the lens;

TðzÞ
1 0

wðzÞ�1jðzÞ�2n 1

� 

; for z in the lower parts

of the lens:

8>>>>>>>>>><
>>>>>>>>>>:

ð3:6Þ

Then, S is the unique solution of the following equivalent RH problem, cf. [16,
Section 4].

RH problem for S.

(a) SðzÞ is analytic for zAC\S:
(b) SðzÞ satisfies the following jump relations on So;

SþðzÞ ¼ S�ðzÞ
1 0

wðzÞ�1jðzÞ�2n 1

� 

; for zASo-ðCþ,C�Þ; ð3:7Þ

SþðxÞ ¼ S�ðxÞ
0 wðxÞ

�wðxÞ�1 0

 !
; for xASo-ð�1; 1Þ: ð3:8Þ

(c) SðzÞ has the following behavior at infinity:

SðzÞ ¼ I þ Oð1=zÞ; as z-N: ð3:9Þ

(d) For ao0; SðzÞ has the following behavior as z-1:

SðzÞ ¼ O
1 jz � 1ja

1 jz � 1ja
� 


; as z-1; zAC\S: ð3:10Þ

For a ¼ 0; SðzÞ has the following behavior as z-1:

SðzÞ ¼ O
log jz � 1j log jz � 1j
log jz � 1j log jz � 1j

� 

; as z-1; zAC\S: ð3:11Þ

For a40; SðzÞ has the following behavior as z-1:

SðzÞ ¼
O

1 1

1 1

� 

; as z-1 from outside the lens;

O
jz � 1j�a 1

jz � 1j�a 1

� 

; as z-1 from inside the lens:

8>>><
>>>:

ð3:12Þ

(e) SðzÞ has the same behavior near �1 if we replace in (3.10)–(3.12), a by b; jz � 1j
by jz þ 1j and take the limit z-� 1 instead of z-1:
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(f) For n ¼ 1;y; p; SðzÞ has the following behavior as z-xn: For lno0 we have

SðzÞ ¼ O
1 jz � xnj2ln

1 jz � xnj2ln

 !
; as z-xn; zAC\S: ð3:13Þ

For ln40 we have

SðzÞ ¼
O

1 1

1 1

� 

; as z-xn from outside the lens;

O
jz � xnj�2ln 1

jz � xnj�2ln 1

 !
; as z-xn from inside the lens:

8>>>><
>>>>:

ð3:14Þ

Since jjðzÞj41 for zAC\½�1; 1� we see from (3.7) that the oscillatory terms on the
diagonal entries in the jump matrix for T have been transformed into exponentially
decaying off-diagonal entries in the jump matrix for S on the lips of the lens. So, the
jump matrix for S converges exponentially fast to the identity matrix on the lips of
the lens, as n-N: Hence, we expect that the leading order asymptotics are
determined by the solution of the following RH problem.

RH problem for N .

(a) NðzÞ is analytic for zAC\½�1; 1�:
(b) NðzÞ satisfies the following jump relation on the interval ð�1; 1Þ\fx1;y; xpg:

NþðxÞ ¼ N�ðxÞ
0 wðxÞ

�wðxÞ�1 0

 !
; for xAð�1; 1Þ\fx1;y; xpg: ð3:15Þ

(c) NðzÞ has the following behavior at infinity:

NðzÞ ¼ I þ Oð1=zÞ; as z-N: ð3:16Þ
The solution of the RH problem for N is referred to as the parametrix for the outside
region and it has been solved in [16, Section 5] using the Szeg +o function associated
with the generalized Jacobi weight w;

DðzÞ ¼ ðz � 1Þa=2ðz þ 1Þb=2
Qp

n¼1 ðz � xnÞln

jðzÞ aþbþ2
Pp

n¼1
lnð Þ=2

� exp
ðz2 � 1Þ1=2

2p

Z 1

�1

log hðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p dx

z � x

 !
: ð3:17Þ

The Szeg +o function DðzÞ associated to w is analytic and non-zero for zAC\½�1; 1�;
satisfies the jump condition DþðxÞD�ðxÞ ¼ wðxÞ for xAð�1; 1Þ\fx1;y; xpg; and

DN ¼ limz-N DðzÞAð0;þNÞ: The solution of the RH problem for N is then given
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by, see [16, Section 5],

NðzÞ ¼ Ds3
N

aðzÞ þ aðzÞ�1

2

aðzÞ � aðzÞ�1

2i

aðzÞ � aðzÞ�1

�2i

aðzÞ þ aðzÞ�1

2

0
BB@

1
CCADðzÞ�s3 ; ð3:18Þ

where

aðzÞ ¼ ðz � 1Þ1=4

ðz þ 1Þ1=4
: ð3:19Þ

For later use we have the following lemma.

Lemma 3.4. For every n ¼ 0;y; p;

DþðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
e�icnðxÞ; for xnoxoxnþ1: ð3:20Þ

Here x0 ¼ �1; xpþ1 ¼ 1; and cn is given by ð1:15Þ:

Proof. We rewrite expression (3.17) for the Szeg +o function as

DðzÞ ¼ ðz � 1Þa=2ðz þ 1Þb=2
Qp

k¼1 ðz � xkÞlk

jðzÞ aþbþ2
Pp

k¼1
lkð Þ
!

2
expð�iðz2 � 1Þ1=2FðzÞÞ; ð3:21Þ

where

FðzÞ ¼ 1

2pi

Z 1

�1

log hðxÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p dt

t � z
:

Now, we determine DþðxÞ for xAðxn; xnþ1Þ: So, we need to take the þ boundary
values for all quantities in (3.21). Using the Sokhotskii–Plemelj formula [12, Section
4.2] we have

FþðxÞ ¼
log hðxÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p þ 1

2pi
_
1

�1

log hðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p dt

t � x
;

where the integral is a Cauchy principal value integral, so that, by (3.21) and the fact
that jþðxÞ ¼ expði arccos xÞ; the lemma is proved after an easy calculation. &

Before we can to do the third transformation we have to be careful, since the
jump matrices for S and N are not uniformly close to each other near the
endpoints 71 and near the algebraic singularities xn: Therefore, a local analysis near
these points is necessary. Near the endpoints this has already been done in [16,
Section 6].
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We have constructed in [16, Section 6] a parametrix P1 in the disk Ud;1 with radius

d40; sufficiently small, and center 1. This is a matrix valued function in Ud;1; that

has the same jumps as S on S; that matches with N on the boundary
@Ud;1 of Ud;1;

P1ðzÞN�1ðzÞ ¼ I þ Oð1=nÞ; as n-N; uniformly for zA@Ud;1; ð3:22Þ

and that has the same behavior as SðzÞ near z ¼ 1: The parametrix P1 is
given in [16, Section 6], and is constructed out of Bessel function of order a:
We note that the scalar function W in [16, (6.27)], because of the extra factorQp

n¼1 jx � xnj2ln in the generalized Jacobi weight, should have an extra factorQp
n¼1 ðz � xnÞ2ln :
Similarly we have constructed in [16, Section 6] a parametrix P�1 in the disk Ud;�1

with radius d40 and center �1: This is a matrix valued function in Ud;�1 that has the

same jumps as S on S; that matches with N on @Ud;�1

P�1ðzÞN�1ðzÞ ¼ I þ Oð1=nÞ; as n-N; uniformly for zA@Ud;�1; ð3:23Þ

and that has the same behavior as SðzÞ near z ¼ �1: The parametrix is
given in [16, Section 6], and is constructed out of Bessel functions of order b:
We note that the scalar function W̃ in [16, (6.52)] should have an extra factorQp

n¼1 ðxn � zÞ2ln :
We also have to construct a local parametrix Pxn near the algebraic singularities

xn: Let Ud;xn be the disk, with center xn and radius d40 so that the closures of the

disks Ud;x0
;y;Ud;xpþ1

do not intersect and so that all the disks lie in U : The

construction of the parametrix Pxn will be done in Section 4. For now, let us assume
that we have a 2 � 2 matrix valued function Pxn with the same jumps as S; that
matches with N on @Ud;xn ;

PxnðzÞN�1ðzÞ ¼ I þ Oð1=nÞ; as n-N; uniformly for zA@Ud;xn ; ð3:24Þ

and that has the same behavior as SðzÞ near z ¼ xn:

3.3. Third transformation S/R

Using the parametrix for the outside region, the parametrices near the endpoints,
and the parametrices near the algebraic singularities we do the final transformation.
Let us define the matrix valued function R as

RðzÞ ¼
SðzÞN�1ðzÞ; for zAC\ S,

Spþ1

n¼0

Ud;xn

" #� 

;

SðzÞP�1
xn
ðzÞ; for zAUd;xn\S; and n ¼ 0;y; p þ 1:

8><
>: ð3:25Þ

Remark 3.5. Note that the inverses of the parametrices exist. For N;P�1 and P1 this
was already known, see [16]. In the next section we will show that Pxn is also
invertible.
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If we take care of the behavior near the algebraic singularities in the same ;way as
near the endpoints, it turns out that R satisfies the following RH problem, cf. [16,
Section 7], with jumps on the reduced system of contours SR; see Fig. 3.

RH problem for R.

(a) RðzÞ is analytic for zAC\SR:
(b) RðzÞ satisfies the following jump relations on SR:

RþðzÞ ¼R�ðzÞPxnðzÞN�1ðzÞ;

for zA@Ud;xn ; and n ¼ 0;y; p þ 1; ð3:26Þ

RþðzÞ ¼R�ðzÞNðzÞ
1 0

wðzÞ�1jðzÞ�2n 1

� 

N�1ðzÞ;

for zASR\

[pþ1

n¼0

@Ud;xn

 !
: ð3:27Þ

(c) RðzÞ has the following behavior at infinity:

RðzÞ ¼ I þ Oð1=zÞ; as z-N: ð3:28Þ

By (3.22)–(3.24), the jump matrices on the circles are uniformly close to the
identity matrix as n-N: On the lips of the lens we have by (3.27), as in [16, Section
7], that the jump matrix converges uniformly to the identity matrix at an exponential
rate. So, all jump matrices are uniformly close to the identity matrix. This implies
that, cf. [5,7],

RðzÞ ¼ I þ Oð1=nÞ; as n-N; uniformly for zAC\SR: ð3:29Þ

Remark 3.6. We will show in Section 5 that the Oð1=nÞ term in (3.29) can be
developed into a complete asymptotic expansion in powers of 1=n: This expansion
will be used to prove Theorem 1.1.
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Fig. 3. The reduced system of contours SR with circles Ud;xn of radius d and center xn:

M. Vanlessen / Journal of Approximation Theory 125 (2003) 198–237 213



4. Parametrix near the algebraic singularity xm

Fix nAf1;y; pg: In this section we construct a 2 � 2 matrix valued function Pxn

that satisfies the following RH problem.

RH problem for Pxm
.

(a) PxnðzÞ is defined and analytic for zAUd0;xn \S for some d04d:
(b) PxnðzÞ satisfies the following jump relations on So-Ud;xn :

Pxn;þðzÞ ¼Pxn;�ðzÞ
1 0

wðzÞ�1jðzÞ�2n 1

� 

;

for zAðSo-C7Þ-Ud;xn ; ð4:1Þ

Pxn;þðxÞ ¼Pxn;�ðxÞ
0 wðxÞ

�wðxÞ�1 0

 !
;

for xAðSo-ð�1; 1ÞÞ-Ud;xn : ð4:2Þ

(c) On @Ud;xn we have, as n-N

PxnðzÞN�1ðzÞ ¼ I þ Oð1=nÞ; uniformly for zA@Ud;xn \S: ð4:3Þ

(d) For lno0; PxnðzÞ has the following behavior as z-xn:

PxnðzÞ ¼ O
1 jz � xnj2ln

1 jz � xnj2ln

 !
; as z-xn: ð4:4Þ

For ln40; PxnðzÞ has the following behavior as z-xn:

PxnðzÞ ¼
O

1 1

1 1

� 

; as z-xn from outside the lens;

O
jz � xnj�2ln 1

jz � xnj�2ln 1

 !
; as z-xn from inside the lens:

8>>>><
>>>>:

ð4:5Þ

We will work as follows. First, we construct a matrix valued function that satisfies
conditions (a), (b) and (d) of the RH problem for Pxn : For this purpose, we will

transform (in Section 4.1) this RH problem into a RH problem for P
ð1Þ
xn with constant

jump matrices and construct (in Section 4.2) a solution of the RH problem for P
ð1Þ
xn :

Afterwards, we will also consider (in Section 4.3) the matching condition (c) of the
RH problem for Pxn :
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4.1. Transformation to a RH problem with constant jump matrices

Since h is analytic in U with positive real part, the scalar function

WxnðzÞ ¼ ð1 � zÞa=2ð1 þ zÞb=2h1=2ðzÞ
Yn�1

k¼1

ðz � xkÞlk
Yp

l¼nþ1

ðxl � zÞll

�
ðz � xnÞln ; for zAðK l

xn
-UÞ\R;

ðxn � zÞln ; for zAðK r
xn
-UÞ\R;

(
ð4:6Þ

is defined and analytic for zAU\ðR,GxnÞ: Here, we recall that K l
xn

and K r
xn

are the

sets of all points on the left, respectively right, of Gxn : We seek Pxn in the form

PxnðzÞ ¼ En;xnðzÞPð1Þ
xn
ðzÞWxnðzÞ

�s3jðzÞ�ns3 ; ð4:7Þ

where the matrix valued function En;xn is analytic in a neighborhood of Ud;xn ; and

En;xn will be determined (in Section 4.3) so that the matching condition (c) of the RH

problem for Pxn is satisfied.
Since Pxn has jumps on S-Ud;xn ; and since Wxn has a jump on Gxn-U ; the matrix

valued function P
ð1Þ
xn has jumps on the contour

Sxn ¼ ðS,GxnÞ-Ud;xn ;

see Fig. 4. The contour Sxn consists of eight parts, which we denote by S1;y;S8; as
shown in Fig. 4. We write

So
xn
¼ Sxn\fxng; and So

k ¼ Sk\fxng; for k ¼ 1;y; 8:

In order to determine the jump matrices for P
ð1Þ
xn ; we need some information about

the scalar function Wxn : Write

K I
xn
¼ K r

xn
-Cþ; K II

xn
¼ K l

xn
-Cþ;

K III
xn

¼ K l
xn
-C�; KIV

xn
¼ K r

xn
-C�:

So, the sets K I
xn
;y;K IV

xn
divide the complex plane into four regions divided

by the real axis and the contour Gxn : By (3.4) and (4.6), we have for

zAðK r
xn�1

-K l
xnþ1

Þ-U ;

W 2
xn
ðzÞ ¼

wðzÞe�2piln ; if zAK I
xn
,K III

xn
;

wðzÞe2piln ; if zAK II
xn
,K IV

xn
:

(
ð4:8Þ

Here, we recall that K r
x0

¼ K l
xpþ1

¼ C: From this we see that

Wxn;þðxÞWxn;�ðxÞ ¼ wðxÞ; for xAðxn�1; xnþ1Þ\fxng: ð4:9Þ

By (4.6) we have on the contour Gxn ;

Wxn;þðzÞWxn;�ðzÞ
�1 ¼ elnpi; for zAGxn-U : ð4:10Þ
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We now have enough information about Wxn to determine the jump matrices for P
ð1Þ
xn :

First, we determine the jump matrix on the lips of the lens. By (4.1), (4.7) and (4.8) the

matrix valued function P
ð1Þ
xn should satisfy on So

2,So
4,So

6,So
8 the jump relation

P
ð1Þ
xn;þðzÞ ¼Pð1Þ

xn;�ðzÞjðzÞ
�ns3WxnðzÞ

�s3
1 0

wðzÞ�1jðzÞ�2n 1

� 

WxnðzÞ

s3jðzÞns3

¼Pð1Þ
xn;�ðzÞ

1 0

wðzÞ�1
W 2

xn
ðzÞ 1

 !

¼Pð1Þ
xn;�ðzÞ

1 0

e72piln 1

� 

; ð4:11Þ

where in e72piln the þ sign holds for zASo
4,So

8 and the � sign for zASo
2,So

6 :
Next, we determine the jump matrix on the interval. For xASo

1,So
5 we have by

(4.2), (4.7), (4.9), and the fact that jþðxÞj�ðxÞ ¼ 1;

P
ð1Þ
xn;þðxÞ ¼Pð1Þ

xn;�ðxÞWxn;�ðxÞ
�s3j�ðxÞ

�ns3
0 wðxÞ

�wðxÞ�1 0

 !

� Wxn;þðxÞ
s3jþðxÞ

ns3

¼Pð1Þ
xn;�ðxÞ

0 wðxÞWxn;þðxÞ
�1

Wxn;�ðxÞ
�1

�wðxÞ�1
Wxn;þðxÞWxn;�ðxÞ 0

 !

¼Pð1Þ
xn;�ðxÞ

0 1

�1 0

� 

: ð4:12Þ
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And finally, we determine the jump matrix on the contour that goes vertically
through xn: For zASo

3,So
7 we have by (4.7) and (4.10),

P
ð1Þ
xn;þðzÞ ¼ Pð1Þ

xn;�ðzÞWxn;�ðzÞ
�s3Wxn;þðzÞ

s3 ¼ Pð1Þ
xn;�ðzÞe

lnpis3 : ð4:13Þ

We then see that we must look for a matrix valued function P
ð1Þ
xn that satisfies the

following RH problem.

RH problem for Pð1Þ
xm
.

(a) P
ð1Þ
xn ðzÞ is defined and analytic for zAUd0;xn \ðS,GxnÞ for some d04d:

(b) P
ð1Þ
xn ðzÞ satisfies the following jump relations on So

xn
:

P
ð1Þ
xn;þðxÞ ¼ Pð1Þ

xn;�ðxÞ
0 1

�1 0

� 

; for xASo

1,So
5 ; ð4:14Þ

P
ð1Þ
xn;þðzÞ ¼ Pð1Þ

xn;�ðzÞ
1 0

e�2piln 1

� 

; for zASo

2,So
6 ; ð4:15Þ

P
ð1Þ
xn;þðzÞ ¼ Pð1Þ

xn;�ðzÞe
lnpis3 ; for zASo

3,So
7 ; ð4:16Þ

P
ð1Þ
xn;þðzÞ ¼ Pð1Þ

xn;�ðzÞ
1 0

e2piln 1

� 

; for zASo

4,So
8 : ð4:17Þ

(c) For lno0; P
ð1Þ
xn ðzÞ has the following behavior as z-xn:

Pð1Þ
xn
ðzÞ ¼ O

jz � xnjln jz � xnjln

jz � xnjln jz � xnjln

 !
; as z-xn: ð4:18Þ

For ln40; P
ð1Þ
xn ðzÞ has the following behavior as z-xn:

Pð1Þ
xn
ðzÞ ¼

O
jz � xnjln jz � xnj�ln

jz � xnjln jz � xnj�ln

 !
; as z-xn from

outside the lens;

O
jz � xnj�ln jz � xnj�ln

jz � xnj�ln jz � xnj�ln

 !
; as z-xn from inside

the lens:

8>>>>>>>>><
>>>>>>>>>:

ð4:19Þ

Remark 4.1. Condition (c) follows from condition (d) of the RH problem for Pxn ;
since

PxnðzÞ ¼ En;xnðzÞPð1Þ
xn
ðzÞWxnðzÞ

�s3jðzÞ�ns3 ;
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where jðzÞ is bounded and bounded away from 0 near z ¼ xn; and where WxnðzÞ
behaves like cjz � xnjln as z-xn; with a non-zero constant c:

4.2. Construction of P
ð1Þ
xn

The construction of P
ð1Þ
xn is based upon an auxiliary RH problem for Cl in the z-

plane with jumps on the contour SC ¼
S8

i¼1 Gi consisting of eight straight rays,

oriented as in Fig. 5, which divides the complex plane into eight regions I–VIII, also

shown in Fig. 5. We let l4� 1
2
:

RH problem for Cl.

(a) ClðzÞ is analytic for zAC\SC:
(b) ClðzÞ satisfies the following jump relations on SC:

Cl;þðzÞ ¼ Cl;�ðzÞ
0 1

�1 0

� 

; for zAG1,G5; ð4:20Þ

Cl;þðzÞ ¼ Cl;�ðzÞ
1 0

e�2pil 1

� 

; for zAG2,G6; ð4:21Þ

Cl;þðzÞ ¼ Cl;�ðzÞelpis3 ; for zAG3,G7; ð4:22Þ

Cl;þðzÞ ¼ Cl;�ðzÞ
1 0

e2pil 1

� 

; for zAG4,G8: ð4:23Þ
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(c) For lo0; ClðzÞ has the following behavior as z-0:

ClðzÞ ¼ O
jzjl jzjl

jzjl jzjl

 !
; as z-0: ð4:24Þ

For l40; ClðzÞ has the following behavior as z-0:

ClnðzÞ ¼
O

jzjl jzj�l

jzjl jzj�l

 !
; as z-0 for zA II; III; VI; VII;

O
jzj�l jzj�l

jzj�l jzj�l

 !
; as z-0 for zA I; IV; V; VIII:

8>>>>><
>>>>>:

ð4:25Þ

We construct a solution Cl of this RH problem out of the modified Bessel

functions Il71=2 and Kl71=2; and out of the Hankel functions H
ð1Þ
l71=2 and H

ð2Þ
l71=2:

For zA I, we define ClðzÞ by

ClðzÞ ¼
1

2

ffiffiffi
p

p
z1=2

H
ð2Þ
lþ1

2

ðzÞ �iH
ð1Þ
lþ1

2

ðzÞ

H
ð2Þ
l�1

2

ðzÞ �iH
ð1Þ
l�1

2

ðzÞ

0
B@

1
CAe�ðlþ1

4
Þpis3 : ð4:26Þ

For zA II, by

ClðzÞ ¼

ffiffiffi
p

p
z1=2I

lþ1
2
ðze�

pi
2 Þ � 1ffiffiffi

p
p z1=2K

lþ1
2
ðze�

pi
2 Þ

�i
ffiffiffi
p

p
z1=2I

l�1
2
ðze�

pi
2 Þ � iffiffiffi

p
p z1=2K

l�1
2
ðze�

pi
2 Þ

0
BB@

1
CCAe�

1
2
lpis3 : ð4:27Þ

For zA III, by

ClðzÞ ¼

ffiffiffi
p

p
z1=2I

lþ1
2
ðze�

pi
2 Þ � 1ffiffiffi

p
p z1=2K

lþ1
2
ðze�

pi
2 Þ

�i
ffiffiffi
p

p
z1=2I

l�1
2
ðze�

pi
2 Þ � iffiffiffi

p
p z1=2K

l�1
2
ðze�

pi
2 Þ

0
BB@

1
CCAe

1
2
lpis3 : ð4:28Þ

For zA IV, by

ClðzÞ ¼
1

2

ffiffiffi
p

p
ð�zÞ1=2

iH
ð1Þ
lþ1

2

ð�zÞ �H
ð2Þ
lþ1

2

ð�zÞ

�iH
ð1Þ
l�1

2

ð�zÞ H
ð2Þ
l�1

2

ð�zÞ

0
B@

1
CAeðlþ

1
4
Þpis3 : ð4:29Þ

For zA V, by

ClðzÞ ¼
1

2

ffiffiffi
p

p
ð�zÞ1=2

�H
ð2Þ
lþ1

2

ð�zÞ �iH
ð1Þ
lþ1

2

ð�zÞ

H
ð2Þ
l�1

2

ð�zÞ iH
ð1Þ
l�1

2

ð�zÞ

0
B@

1
CAe�ðlþ1

4
Þpis3 : ð4:30Þ
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For zA VI, by

ClðzÞ ¼
�i

ffiffiffi
p

p
z1=2I

lþ1
2
ðze

pi
2 Þ � iffiffiffi

p
p z1=2K

lþ1
2
ðze

pi
2 Þ

ffiffiffi
p

p
z1=2I

l�1
2
ðze

pi
2 Þ � 1ffiffiffi

p
p z1=2K

l�1
2
ðze

pi
2 Þ

0
BB@

1
CCAe�

1
2
lpis3 : ð4:31Þ

For zA VII, by

ClðzÞ ¼
�i

ffiffiffi
p

p
z1=2I

lþ1
2
ðze

pi
2 Þ � iffiffiffi

p
p z1=2K

lþ1
2
ðze

pi
2 Þ

ffiffiffi
p

p
z1=2I

l�1
2
ðze

pi
2 Þ � 1ffiffiffi

p
p z1=2K

l�1
2
ðze

pi
2 Þ

0
BB@

1
CCAe

1
2 lpis3 : ð4:32Þ

And finally, for zA VIII, we define it by

ClðzÞ ¼
1

2

ffiffiffi
p

p
z1=2

�iH
ð1Þ
lþ1

2

ðzÞ �H
ð2Þ
lþ1

2

ðzÞ

�iH
ð1Þ
l�1

2

ðzÞ �H
ð2Þ
l�1

2

ðzÞ

0
B@

1
CAeðlþ

1
4
Þpis3 : ð4:33Þ

Theorem 4.2. The matrix valued function Cl; defined by (4.26)–(4.33), is a solution of

the RH problem for Cl:

Proof. The functions Il71=2;Kl71=2;H
ð1Þ
l71=2 and H

ð2Þ
l71=2 are defined and analytic in

the complex plane with a branch cut along the negative real axis. So, the matrix
valued function Cl defined by (4.26)–(4.33) is analytic in the respective regions, and
condition (a) of the RH problem is therefore satisfied. Condition (c) follows easily
from [1, Formulas 9.1.9, 9.6.7 and 9.6.9]. So, it remains to prove that jump
conditions (4.20)–(4.23) are satisfied.

Jump conditions (4.20) and (4.22): By inspection, it is easy to see that these jump
conditions are satisfied.

Jump condition (4.21) for zAG2: We use (4.27) to evaluate Cl;þðzÞ and (4.26) to

evaluate Cl;�ðzÞ: From (4.26) and [1, Formulas 9.1.3, 9.1.4 and 9.6.3], the 1,1-entry

and the 2,1-entry on the right of (4.21) are equal to

Cl;11;�ðzÞ þ e�2pilCl;12;�ðzÞ

¼ 1

2

ffiffiffi
p

p
z1=2e�ðlþ1

4ÞpiH
ð2Þ
lþ1

2

ðzÞ þ 1

2

ffiffiffi
p

p
z1=2e�ðlþ1

4ÞpiH
ð1Þ
lþ1

2

ðzÞ

¼
ffiffiffi
p

p
z1=2e�ðlþ1

4
ÞpiJ

lþ1
2
ðzÞ

¼
ffiffiffi
p

p
z1=2I

lþ1
2
ðze�

pi
2 Þe�

1
2
lpi; ð4:34Þ
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and

Cl;21;�ðzÞ þ e�2pilCl;22;�ðzÞ

¼ 1

2

ffiffiffi
p

p
z1=2e�ðlþ1

4
ÞpiH

ð2Þ
l�1

2

ðzÞ þ 1

2

ffiffiffi
p

p
z1=2e�ðlþ1

4
ÞpiH

ð1Þ
l�1

2

ðzÞ

¼
ffiffiffi
p

p
z1=2e�ðlþ1

4
ÞpiJ

l�1
2
ðzÞ

¼ � i
ffiffiffi
p

p
z1=2I

l�1
2
ðze�

pi
2 Þe�

1
2
lpi; ð4:35Þ

respectively. By (4.27) we then see that the first columns of both sides of (4.21) agree.
From (4.26), (4.27) and [1, Formula 9.6.4], the second columns of both sides of (4.21)
agree as well.

Jump condition (4.21) for zAG6: We use (4.30) to evaluate Cl;þðzÞ and (4.31) to

evaluate Cl;�ðzÞ: Since �z ¼ zepi; we have, from (4.31) and [1, Formula 9.6.4], that

the 1,2-entry and the 2,2-entry on the right of (4.21) are equal to

Cl;12;�ðzÞ ¼ � iffiffiffi
p

p z1=2e
1
2
lpiK

lþ1
2
ðze

pi
2 Þ ¼ � i

2

ffiffiffi
p

p
ð�zÞ1=2H

ð1Þ
lþ1

2

ð�zÞeðlþ
1
4
Þpi; ð4:36Þ

and

Cl;22;�ðzÞ ¼ � 1ffiffiffi
p

p z1=2e
1
2
lpiK

l�1
2
ðze

pi
2 Þ ¼ i

2

ffiffiffi
p

p
ð�zÞ1=2H

ð1Þ
l�1

2

ð�zÞeðlþ
1
4
Þpi; ð4:37Þ

respectively. So, by (4.30) we see that the second columns of both sides of (4.21)

agree. Since �z ¼ zepi we have, from (4.31), (4.36), (4.37) and [1, Formulas 9.1.3,
9.1.4 and 9.6.3], that the 1,1-entry and the 2,1-entry on the right of (4.21) are equal to

Cl;11;�ðzÞ þ e�2pilCl;12;�ðzÞ

¼ �
ffiffiffi
p

p
ð�zÞ1=2e�

1
2
lpiI

lþ1
2
ðze

pi
2 Þ þ 1

2

ffiffiffi
p

p
ð�zÞ1=2e�ðlþ1

4
ÞpiH

ð1Þ
lþ1

2

ð�zÞ

¼ �
ffiffiffi
p

p
ð�zÞ1=2e�ðlþ1

4
ÞpiJ

lþ1
2
ð�zÞ þ 1

2

ffiffiffi
p

p
ð�zÞ1=2e�ðlþ1

4
ÞpiH

ð1Þ
lþ1

2

ð�zÞ

¼ �1

2

ffiffiffi
p

p
ð�zÞ1=2H

ð2Þ
lþ1

2

ð�zÞe�ðlþ1
4
Þpi; ð4:38Þ

and

Cl;21;�ðzÞ þ e�2pilCl;22;�ðzÞ

¼ �i
ffiffiffi
p

p
ð�zÞ1=2e�

1
2 lpiI

l�1
2
ðze

pi
2 Þ � 1

2

ffiffiffi
p

p
ð�zÞ1=2e�ðlþ1

4ÞpiH
ð1Þ
l�1

2

ð�zÞ

¼
ffiffiffi
p

p
ð�zÞ1=2e�ðlþ1

4
ÞpiJ

l�1
2
ð�zÞ � 1

2

ffiffiffi
p

p
ð�zÞ1=2e�ðlþ1

4
ÞpiH

ð1Þ
l�1

2

ð�zÞ

¼ 1

2

ffiffiffi
p

p
ð�zÞ1=2H

ð2Þ
l�1

2

ð�zÞe�ðlþ1
4Þpi; ð4:39Þ
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respectively. By (4.30) we then see that the first columns of both sides of (4.21) agree
as well. We now have proven that jump condition (4.21) is satisfied.

Jump condition (4.23): Similarly, we can prove that this jump condition is also
satisfied. Here, we also use [1, Formula 9.1.35], and the details are left to the reader.
This implies that the theorem is proved. &

Now, we explain how we get P
ð1Þ
xn out of the solution Cln (depending on the

parameter ln) of the RH problem for Cln : We make use of the following scalar
function,

fxnðzÞ ¼
i log jðzÞ � i log jþðxnÞ; for Im z40;

�i log jðzÞ � i log jþðxnÞ; for Im zo0;

	
ð4:40Þ

which is defined and analytic for zAC\R: For xAð�1; 1Þ we have, since
jþðxÞj�ðxÞ ¼ 1; that fxn;þðxÞ ¼ fxn;�ðxÞ; so that fxn is also analytic across the

interval ð�1; 1Þ: The behavior of fxn near xn is

fxnðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
n

p ðz � xnÞ þ Oððz � xnÞ2Þ; as z-xn:

Since fxn is analytic near xn; and since f 0ðxnÞa0; the scalar function fxn is a one-to-
one conformal mapping on a neighborhood of xn: So, if we choose d40 sufficiently
small, fxn is a one-to-one conformal mapping on Ud;xn and the image of Ud;xn under

the mapping z ¼ fxn is convex.
For xAð�1; 1Þ we have by (4.40) that fxnðxÞ ¼ arccos xn � arccos x: So, fxnðxÞ is

real for xAð�1; 1Þ: If x4xn we have fxnðxÞ40; and if xoxn we have fxnðxÞo0: Since
fxn is a conformal mapping, this implies that fxn maps Ud;xn-Cþ one-to-one onto

fxnðUd;xnÞ-Cþ; and Ud;xn-C� one-to-one onto fxnðUd;xnÞ-C�:
We now come back to the special choice of the contour Gxn ; which we used to

continuate our weight analytically, see Section 3.2. For zAGxn-Cþ we have
arg jðzÞ ¼ arccos xn; by construction of Gxn ; and for zAGxn-C� we have arg jðzÞ ¼
�arccos xn: By (4.40) we then have Re fxnðzÞ ¼ 0; for zAGxn : This implies that the
image of the contour Gxn under the mapping z ¼ fxn is the imaginary axis, which
explains our choice of Gxn :

We remember that the contour Sxn was not yet completely defined. Now, we define
the contours S2,S4,S6,S8 as the preimages of the parts of the corresponding
rays G2,G4,G6,G8 in fxnðUd;xnÞ under the mapping z ¼ fxnðzÞ; see Fig. 6. We then

have immediately that we can define

Pð1Þ
xn
ðzÞ ¼ ClnðnfxnðzÞÞ; ð4:41Þ

and P
ð1Þ
xn will solve the RH problem for P

ð1Þ
xn :

Remark 4.3. We can use any one-to-one conformal mapping on Ud;xn to construct

P
ð1Þ
xn out of Cln : However, we have to choose it so as to compensate for the factor

jðzÞ�ns3 in (4.7). In the next section we will see that our choice of conformal
mapping will do the job.
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4.3. Construction of En;xn

We recall that for every matrix valued function En;xn analytic in a neighborhood of

Ud;xn ; the matrix valued function Pxn given by

PxnðzÞ ¼ En;xnðzÞClnðnfxnðzÞÞWxnðzÞ
�s3jðzÞ�ns3 ð4:42Þ

satisfies conditions (a), (b) and (d) of the RH problem for Pxn : In this section we want
to determine En;xn so that the matching condition (c) is satisfied as well. To this end

we need to know the asymptotic behavior of Cln at infinity, and use this to determine
En;xn : At the end of this section we also show that En;xn is analytic in a neighborhood

of Ud;xn ; so that the parametrix Pxn is completely defined.

In order to determine the asymptotic behavior of Cln at infinity, we insert the
behavior of the Bessel functions at infinity into the matrix valued function Cln ; given
by (4.26)–(4.33). See [1, Formulas 9.7.1–9.7.4] for the behavior of the modified Bessel
functions at infinity, and [1, Formulas 9.2.7–9.2.10] for the behavior of the Hankel
functions at infinity. Then, a straightforward calculation gives us the asymptotic
behavior of Cln at infinity. The behavior is different in each quadrant. For the upper
half-plane we find as z-N;

ClnðzÞ ¼
1ffiffiffi
2

p
1 �i

�i 1

� 

I þ O

1

z

� 
" #
e
pi
4
s3e�izs3e�

1
2
lnpis3 ; ð4:43Þ

uniformly for z in the first quadrant, and

ClnðzÞ ¼
1ffiffiffi
2

p
1 �i

�i 1

� 

I þ O

1

z

� 
" #
e
pi
4
s3e�izs3e

1
2
lnpis3 ; ð4:44Þ

uniformly for z in the second quadrant. For the lower half-plane we find as z-N;

ClnðzÞ ¼
1ffiffiffi
2

p
1 �i

�i 1

� 

I þ O

1

z

� 
" #
e
pi
4
s3e�izs3e

1
2
lnpis3

0 �1

1 0

� 

; ð4:45Þ
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corresponding ray Gk in fxn ðUd;xn Þ:

M. Vanlessen / Journal of Approximation Theory 125 (2003) 198–237 223



uniformly for z in the third quadrant, and

ClnðzÞ ¼
1ffiffiffi
2

p
1 �i

�i 1

� 

I þ O

1

z

� 
" #
e
pi
4
s3e�izs3e�

1
2
lnpis3

0 �1

1 0

� 

; ð4:46Þ

uniformly for z in the fourth quadrant.
Now, we use the asymptotic behavior (4.43)–(4.46) of Cln at infinity to determine

En;xn : We explain this only for the region @Ud;xn-K I
xn
: The other cases are similar and

the details are left to the reader. For zA@Ud;xn-KI
xn

we have, since fxn is a one-to-one

conformal mapping on Ud;xn ; that nfxnðzÞ lies in the first quadrant, cf. Fig. 6. So, we

may use (4.43) to evaluate the asymptotic behavior of ClnðnfxnðzÞÞ as n-N: Since
Im z40; we have by (4.40),

e�infxn ðzÞ ¼ jþðxnÞ�njðzÞn:

Using (4.42) and (4.43) we then find

PxnðzÞN�1ðzÞ ¼En;xnðzÞ
1ffiffiffi
2

p
1 �i

�i 1

� 

I þ O

1

n

� 
" #

� e
pi
4
s3jþðxnÞ�ns3e�

1
2
lnpis3WxnðzÞ

�s3N�1ðzÞ;

as n-N; uniformly for zA@Ud;xn-K I
xn
: So, in order that the matching condition is

satisfied we define for zAU-KI
xn
;

En;xnðzÞ ¼ NðzÞWxnðzÞ
s3e

1
2
lnpis3jþðxnÞns3e�

pi
4
s3

1ffiffiffi
2

p
1 i

i 1

� 

: ð4:47Þ

Remark 4.4. With this En;xn we see that

PxnðzÞN�1ðzÞ ¼NðzÞWxnðzÞ
s3jþðxnÞns3 I þ O

1

n

� 
" #
� jþðxnÞ�ns3WxnðzÞ

�s3N�1ðzÞ;

as n-N; uniformly for zA@Ud;xn-K I
xn
: Since jjþðxnÞj ¼ 1; and since Wxn as well as

all entries of N are bounded and bounded away from 0 on @Ud;xn ; the matching

condition is satisfied on @Ud;xn-K I
xn
:

Similarly, we use (4.40) and (4.42) together with the asymptotic behavior (4.44)–
(4.46) of Cln at infinity to determine En;xn in the other regions. Straightforward

calculations then show that we have to define En;xnðzÞ for zAU\ðR,GxnÞ as

En;xnðzÞ ¼ EnðzÞjþðxnÞns3e�
pi
4
s3

1ffiffiffi
2

p
1 i

i 1

� 

; ð4:48Þ

where the matrix valued function EnðzÞ does not depend on n; is analytic for
zAU\ðR,GxnÞ and given by

EnðzÞ ¼ NðzÞWxnðzÞ
s3e

1
2
lnpis3 ; for zAU-K I

xn
; ð4:49Þ
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EnðzÞ ¼ NðzÞWxnðzÞ
s3e�

1
2
lnpis3 ; for zAU-K II

xn
; ð4:50Þ

EnðzÞ ¼ NðzÞWxnðzÞ
s3

0 1

�1 0

� 

e�

1
2
lnpis3 ; for zAU-K III

xn
; ð4:51Þ

EnðzÞ ¼ NðzÞWxnðzÞ
s3

0 1

�1 0

� 

e
1
2 lnpis3 ; for zAU-K IV

xn
: ð4:52Þ

Now, everything is fine, except for the fact that En;xn is analytic in U\ðR,GxnÞ; but
we want it to be analytic in a full neighborhood of xn: This will be proven in the next
proposition.

Proposition 4.5. The matrix valued function En;xn defined by (4.48)–(4.52) is analytic in

U\ðð�N; xn�1�,½xnþ1;NÞÞ:

Proof. By (4.48) it suffices to prove that En is analytic in U\ðð�N; xn�1�,½xnþ1;NÞÞ:
We will check that En has no jumps on ðxn�1; xnþ1Þ\fxng and ðGxn-UÞ\fxng; and in
addition that the isolated singularity of En at xn is removable. Let ðxn�1; xnþ1Þ be
oriented from the left to the right, and let Gxn-U be oriented so that it points away
from xn; cf. Fig. 4.

For xAðxn�1; xnÞ we use (4.50) to evaluate En;þðxÞ and (4.51) to evaluate En;�ðxÞ:
From (4.8) we have Wxn;þðxÞ ¼ wðxÞ1=2elnpi and Wxn;�ðxÞ ¼ wðxÞ1=2e�lnpi: Therefore,

by (3.15), (4.50) and (4.51),

En;þðxÞ ¼N�ðxÞ
0 wðxÞ

�wðxÞ�1 0

 !
wðxÞs3=2elnpis3e�

1
2
lnpis3

¼N�ðxÞwðxÞs3=2e�lnpis3
0 1

�1 0

� 

e�

1
2
lnpis3

¼En;�ðxÞ:

Hence, En is analytic across ðxn�1; xnÞ: Similarly, we have by (3.15), (4.8), (4.49) and
(4.52) that En is analytic across ðxn; xnþ1Þ as well.

For zAðGxn-UÞ-Cþ we use (4.50) to evaluate En;þðzÞ and (4.49) to evaluate

En;�ðzÞ: From (4.10) we have Wxn;þðzÞWxn;�ðzÞ
�1 ¼ elnpi: Therefore, by (4.49) and

(4.50),

En;þðzÞ ¼NðzÞWxn;þðzÞ
s3e�

1
2
lnpis3

¼En;�ðzÞe�
1
2 lnpis3Wxn;�ðzÞ

�s3Wxn;þðzÞ
s3e�

1
2 lnpis3

¼En;�ðzÞ;

so that En is analytic across ðGxn-UÞ-Cþ: Similarly, we have by (4.10), (4.51) and
(4.52) that En is analytic across ðGxn-UÞ-C� as well. We thus have proven that En

is analytic in U\ðð�N; xn�1�,½xnþ1;NÞ,fxngÞ:
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It remains to prove that the isolated singularity of En at xn is removable. We have

by (3.17) and (4.6) that DðzÞ behaves like c1jz � xnjln and WxnðzÞ like c2jz � xnjln as
z-xn; where c1 and c2 are non-zero constants. Therefore

WxnðzÞ
DðzÞ ¼ Oð1Þ; and

DðzÞ
WxnðzÞ

¼ Oð1Þ; as z-xn:

So, by (3.18), each entry of NðzÞWxnðzÞ
s3 remains bounded as z-xn: This implies by

(4.49)–(4.52) that each entry of En remains bounded as z-xn; so that the isolated
singularity of En at xn is removable. Therefore, the proposition is proved. &

This ends the construction of the local parametrix near xn:
We recall that we also wanted the local parametrix Pxn to be invertible, see

Remark 3.5. We will show that

det Pxn � 1: ð4:53Þ

This is analogous as in [16, Section 7] and we will just give a sketch of the proof.
Since En;xn is a product of four matrices all with determinant 1, see (4.48)–(4.52), it

suffices to prove from (4.42) that detCln � 1: Using part (b) of the RH problem for
Cln we find that detCln is analytic in C\f0g: If we then use the behavior of Cln near 0
stated in part (c) of the RH problem the isolated singularity of detCln at 0 has to be
removable, so that detCln is an entire function. Using the asymptotics of Cln at
infinity given by (4.43)–(4.46) we have that detClnðzÞ-1 as z-N: By Liouville’s
theorem we then have that detCln � 1; so that also det Pxn � 1:

5. Asymptotics of the recurrence coefficients

In this section we will determine a complete asymptotic expansion of the
recurrence coefficients an and bn as n-N: Recall that an and bn have been
formulated in terms of the solution of the RH problem for Y ; see (2.7) and (2.8). The
asymptotic analysis of the RH problem for Y has been done in Section 3, and
unfolding the series of transformations Y/T/S/R; see [16, Section 9] for
details, we find

a2
n ¼ lim

z-N

�D2
N

2i
þ zR12ðz; n;wÞ

� 

zR21ðz; n;wÞ þ 1

2iD2
N

� 

; ð5:1Þ

and

bn ¼ lim
z-N

ðz � zR11ðz; n þ 1;wÞR22ðz; n;wÞÞ: ð5:2Þ

Remark 5.1. We note that, see [16, Lemma 8.3],

RðzÞ � Ij jj j ¼ O
1

njzj

� 

; as n-N; ð5:3Þ
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uniformly for jzjZ2; where jj � jj is any matrix norm. Inserting this into (5.1) and
(5.2) we find the known asymptotic behavior of the recurrence coefficients, cf. [13],

an ¼ 1

2
þ Oð1=nÞ; bn ¼ Oð1=nÞ; as n-N:

In the rest of the paper we will develop the Oð1=nÞ terms into complete asymptotic
expansions in powers of 1=n:

In order to determine a complete asymptotic expansion of an and bn we will work
as follows. In Section 5.1, we will determine a complete asymptotic expansion of the
jump matrix for R in powers of 1=n as n-N: As a result, we obtain in Section 5.2 a
complete asymptotic expansion of R: The coefficients in this expansion can be
calculated explicitly via residue calculus, and we will determine the order 1=n term.
Finally, in Section 5.3 we will use this to prove Theorem 1.1.

5.1. Asymptotic expansion of D

Denote the jump matrix for R as I þ D: Then, from condition (c) of the RH
problem for R;

DðzÞ ¼ PxnðzÞN�1ðzÞ � I ; for zA@Ud;xn and n ¼ 0;y; p þ 1; ð5:4Þ

DðzÞ ¼ NðzÞ
1 0

wðzÞ�1jðzÞ�2n 1

� 

N�1ðzÞ � I ; for zASR\

[pþ1

n¼0

@Ud;xn

 !
: ð5:5Þ

In this section we will show that D has an asymptotic expansion in powers of 1=n of
the form

DðzÞB
XN
k¼1

Dkðz; nÞ
nk

; as n-N; ð5:6Þ

uniformly for zASR; and we will also determine the coefficients Dkðz; nÞ explicitly.

Remark 5.2. The n-dependance of the coefficients in the expansion will come from

the factor jþðxnÞns3 in the parametrices near the algebraic singularities xn:

On the lips of the lens, D vanishes at an exponential rate, cf. [16, Section 7]. This
implies for every k;

Dkðz; nÞ ¼ 0; for zASR\

[pþ1

n¼0

@Ud;xn

 !
: ð5:7Þ

On the circles near 71; the asymptotic expansion (5.6) of D is known, see [16,
Section 8]. The restriction of Dkð�; nÞ to @Ud;�1,@Ud;1 is given by [16, (8.5) and (8.6)]

and does not depend on n: It has a meromorphic continuation to Ud0;�1,Ud0;1 for

some d04d; with poles of order at most ½ðk þ 1Þ=2� at 71: For details we refer to [16,
Section 8].
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So, it remains to determine the asymptotic expansion of D on the circles near the
algebraic singularities. Fix nAf1;y; pg: By (4.42), (4.48) and (5.4), we have for
zA@Ud;xn ;

DðzÞ ¼EnðzÞjþðxnÞns3e�
pi
4
s3

1ffiffiffi
2

p
1 i

i 1

� 

�ClnðnfxnðzÞÞjðzÞ

�ns3WxnðzÞ
�s3N�1ðzÞ � I : ð5:8Þ

Here, the matrix valued function Cln is constructed out of Bessel functions, which
have a complete asymptotic expansion at infinity. This implies that ClnðnfxnðzÞÞ also
has a complete asymptotic expansion as n-N: Inserting the asymptotic expansions
of the modified Bessel functions at infinity [1, Formulas 9.7.1–9.7.4] into (4.26),
and the asymptotic expansions of the Hankel functions [1, Formulas 9.2.7–9.2.10]
into (4.27), we obtain

ClnðzÞB
1ffiffiffi
2

p
1 �i

�i 1

� 

I þ

XN
k¼1

ik

2kþ1zk

ð�1Þk
sln;k �itln;k

ið�1Þk
tln;k sln;k

 !" #

� e
pi
4
s3e�

1
2
lnpis3e�izs3 ; ð5:9Þ

as z-N; uniformly for z in the first quadrant. Here, the constants sln;k and tln;k are

given by

sln;k ¼ ln þ
1

2
; k

� 

þ ln �

1

2
; k

� 

; tln;k ¼ ln þ

1

2
; k

� 

� ln �

1

2
; k

� 

; ð5:10Þ

where

ðn; kÞ ¼ ð4n2 � 1Þð4n2 � 9Þyð4n2 � ð2k � 1Þ2Þ
22kk!

:

For zA@Ud;xn-K I
xn

we have, since fxn is a one-to-one conformal mapping on

Ud;xn that nfxnðzÞ lies in the first quadrant, see Fig. 6. So, we may use (5.9) to

determine the asymptotic expansion of ClnðnfxnðzÞÞ as n-N: Since Im z40 we have
by (4.40),

e�infxn ðzÞ ¼ jþðxnÞ�njðzÞn:

Therefore, by (5.9),

1ffiffiffi
2

p
1 i

i 1

� 

ClnðnfxnðzÞÞjðzÞ

�ns3

B I þ
XN
k¼1

ik

2kþ1fxnðzÞ
k
nk

ð�1Þk
sln;k �itln;k

ið�1Þk
tln;k sln;k

 !" #
e
pi
4
s3jþðxnÞ�ns3e�

1
2
lnpis3 ;

as n-N; uniformly for zA@Ud;xn-K I
xn
: Inserting this into (5.8) we have by (4.49),

and the fact that jþðxnÞn remains bounded and bounded away from 0 as n-N
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(since jjþðxnÞj ¼ 1),

DðzÞB
XN
k¼1

ik

2kþ1fxnðzÞ
k

EnðzÞjþðxnÞns3
ð�1Þk

sln;k �tln;k

�ð�1Þk
tln;k sln;k

 !

� jþðxnÞ�ns3E�1
n ðzÞ 1

nk
; ð5:11Þ

as n-N; uniformly for zA@Ud;xn-K I
xn
: Similarly, we find the same asymptotic

expansion on the other regions of @Ud;xn : The details are left to the reader. Thus, for

zA@Ud;xn the coefficients of the expansion (5.6) for D are given by

Dkðz; nÞ ¼ ik

2kþ1fxnðzÞ
k

EnðzÞjþðxnÞns3
ð�1Þk

sln;k �tln;k

�ð�1Þk
tln;k sln;k

 !

� jþðxnÞ�ns3E�1
n ðzÞ: ð5:12Þ

Remark 5.3. These coefficients depend on n through the factors jþðxnÞ7ns3 : Since

jjþðxnÞj ¼ 1; the coefficients Dkðz; nÞ remain bounded as n-N; which is necessary

to get an asymptotic expansion of form (5.6).

We note that f �k
xn

is analytic in C\ðð�N;�1�,½1;NÞÞ except for a pole of order k

at xn; see the discussion at the end of Section 4.2. From the proof of Proposition 4.5

and the fact that det En ¼ 1 we have that En as well as E�1
n are analytic in

U\ðð�N; xn�1�,½xnþ1;NÞÞ: So, the restriction of Dkð�; nÞ to @Ud;xn has a

meromorphic continuation to a neighborhood Ud0;xn of xn for some d04d; with a

pole of order k at xn:

5.2. Asymptotic expansion of R

We recall that D possesses an asymptotic expansion in powers of 1=n of form (5.6)
with oscillatory terms in the expansion. Following the argument that leads to [7,
(4.115)], this implies that R itself possesses an asymptotic expansion in powers of 1=n

given by

Rðz; n;wÞBI þ
XN
k¼1

Rkðz; nÞ
nk

; as n-N; ð5:13Þ

uniformly for zAC\SR: Here, for every k and n;

Rkð�; nÞ is analytic in C\
[pþ1

n¼0

@Ud;xn

 !
; ð5:14Þ

and

Rkðz; nÞ ¼ Oð1=zÞ; as z-N: ð5:15Þ
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The n-dependance in the coefficients Rkðz; nÞ arises through the oscillatory terms in
the expansion of D:

We will now determine, similar as in [16, Section 8], the coefficient R1ðz; nÞ
explicitly. Expanding the jump relation Rþ ¼ R�ðI þ DÞ; and collecting the terms
with 1=n we have

R1;þðs; nÞ � R1;�ðs; nÞ ¼ D1ðs; nÞ; for sA
[pþ1

n¼0

@Ud;xn ; ð5:16Þ

which is, together with (5.14) and (5.15) an additive RH problem. This can easily be
solved using the Sokhotskii–Plemelj formula, but in our case we can write down an
explicit solution as follows. Since D1ðz; nÞ is analytic in neighborhoods of z ¼ 71
and z ¼ xn for n ¼ 1;y; p; except for simple poles at those points, see Section 5.1,
we can write

D1ðz; nÞ ¼ Að1ÞðnÞ
z � 1

þ Oð1Þ; as z-1;

D1ðz; nÞ ¼ Bð1ÞðnÞ
z þ 1

þ Oð1Þ; as z-� 1;

and

D1ðz; nÞ ¼ C
ð1Þ
n ðnÞ

z � xn
þ Oð1Þ; as z-xn;

for certain constant matrices Að1ÞðnÞ;Bð1ÞðnÞ and C
ð1Þ
n ðnÞ:

Remark 5.4. Since D1ðs; nÞ is independent of n for sA@Ud;�1,@Ud;1; see Section 5.1,

the residues Að1ÞðnÞ and Bð1ÞðnÞ of D1ðz; nÞ at z ¼ 1 and z ¼ �1; respectively, are also

independent of n: The n-dependance of the residue C
ð1Þ
n ðnÞ at z ¼ xn follows from the

oscillatory terms jþðxnÞ7ns3 in D1ðs; nÞ near xn; see (5.12).

By inspection we then see that

R1ðz; nÞ ¼

Að1ÞðnÞ
z � 1

þ Bð1ÞðnÞ
z þ 1

þ
Pp
n¼1

C
ð1Þ
n ðnÞ

z � xn
; for zAC\

Spþ1

n¼0

Ud;xn

� 

;

Að1ÞðnÞ
z � 1

þ Bð1ÞðnÞ
z þ 1

þ
Pp
n¼1

C
ð1Þ
n ðnÞ

z � xn
� D1ðz; nÞ; for zA

Spþ1

n¼0

Ud;xn ;

8>>>><
>>>>:

ð5:17Þ

satisfies the additive RH problem (5.14)–(5.16). So, we need to determine the

constant matrices Að1ÞðnÞ;Bð1ÞðnÞ and C
ð1Þ
n ðnÞ for n ¼ 1;y; p: For Að1ÞðnÞ and Bð1ÞðnÞ

we have found, see [16, Section 8],

Að1ÞðnÞ ¼ 4a2 � 1

16
Ds3

N

�1 i

i 1

� 

D�s3

N
; ð5:18Þ
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Bð1ÞðnÞ ¼ 4b2 � 1

16
Ds3

N

1 i

i �1

� 

D�s3

N
; ð5:19Þ

which is clearly independent of n: It remains to determine the residue C
ð1Þ
n ðnÞ of

D1ðz; nÞ at z ¼ xn; for every n ¼ 1;y; p: Fix nAf1;y; pg: Since EnðzÞ and E�1
n ðzÞ are

analytic in a neighborhood of z ¼ xn; and since

fxnðzÞ
�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q
1

z � xn
þ Oð1Þ; as z-xn;

we have by (5.10) and (5.12) that the residue C
ð1Þ
n ðnÞ of D1ðz; nÞ at z ¼ xn is

given by

Cð1Þ
n ðnÞ ¼ i

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q
EnðxnÞjþðxnÞns3

�2l2
n �2ln

2ln 2l2
n

 !
jþðxnÞ�ns3E�1

n ðxnÞ: ð5:20Þ

We want to simplify this expression. So, we need to find convenient expressions for

EnðxnÞ and E�1
n ðxnÞ; and substitute these into (5.20). Since En is analytic near xn we

determine EnðxnÞ by the following limit:

EnðxnÞ ¼ lim
xkxn; xAR

EnðxÞ ¼ lim
xkxn; xAR

En;þðxÞ:

Here, we take the limit from x to xn on the real axis from the right. The last equality
follows from the fact that En has no jumps on ðxn; xnþ1Þ; see Proposition 4.5. From
(3.18) and (4.49) we then find

EnðxnÞ ¼ lim
xkxn; xAR

Ds3
N

aþðxÞ þ aþðxÞ�1

2

aþðxÞ � aþðxÞ�1

2i

aþðxÞ � aþðxÞ�1

�2i

aþðxÞ þ aþðxÞ�1

2

0
BB@

1
CCA

� Wxn;þðxÞ
DþðxÞ

� 
s3

e
1
2
lnpis3 : ð5:21Þ

The Szeg +o function satisfies DþðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
e�icnðxÞ for xAðxn; xnþ1Þ; see Lemma 3.4,

where cn is given by (1.15). By (4.8) we have Wxn;þðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
e�lnpi; so that by

(1.6) and (1.15)

lim
xkxn; xAR

Wxn;þðxÞ
DþðxÞ

e
1
2
lnpi ¼ eicnðxnÞe�

1
2
lnpi ¼ e�

1
2
Fni:

Inserting this into (5.21) and using the following identities, which hold for xAð�1; 1Þ;

aþðxÞ þ aþðxÞ�1

2
¼ e�

pi
4ffiffiffi

2
p

ð1 � x2Þ1=4
jþðxÞ

1=2; ð5:22Þ

aþðxÞ � aþðxÞ�1

2i
¼ e�

pi
4ffiffiffi

2
p

ð1 � x2Þ1=4
ijþðxÞ

�1=2; ð5:23Þ
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we then find

EnðxnÞ ¼
e�

pi
4ffiffiffi

2
p

ð1 � x2
nÞ

1=4
Ds3

N

jþðxnÞ1=2 ijþðxnÞ�1=2

�ijþðxnÞ�1=2 jþðxnÞ1=2

 !
e�

1
2
Fn is3 : ð5:24Þ

Taking inverse, we find

E�1
n ðxnÞ ¼

e�
pi
4ffiffiffi

2
p

ð1 � x2
nÞ

1=4
e
1
2
Fnis3

jþðxnÞ1=2 �ijþðxnÞ�1=2

ijþðxnÞ�1=2 jþðxnÞ1=2

 !
D�s3

N
: ð5:25Þ

Now, we insert (5.24) and (5.25) into (5.20). Using the identity jþðxnÞ ¼
expði arccos xnÞ we then find after a straightforward calculation that the residue

C
ð1Þ
n ðnÞ of D1ðz; nÞ at z ¼ xn is given by

Cð1Þ
n ðnÞ ¼ Ds3

N

Cn;11ðnÞ Cn;12ðnÞ
Cn;21ðnÞ �Cn;11ðnÞ

� 

D�s3

N
; ð5:26Þ

where

Cn;11ðnÞ ¼ �1

2
l2
nxn þ

1

2
ln sinð2n arccos xn � FnÞ; ð5:27Þ

Cn;12ðnÞ ¼
i

2
l2
n �

i

2
lnxn sinð2n arccos xn � FnÞ

� i

2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q
cosð2n arccos xn � FnÞ; ð5:28Þ

Cn;21ðnÞ ¼
i

2
l2
n �

i

2
lnxn sinð2n arccos xn � FnÞ

þ i

2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q
cosð2n arccos xn � FnÞ: ð5:29Þ

This ends the determination of R1ðz; nÞ:
For general k; we get that Rkðz; nÞ in the region C\ð

Spþ1
n¼0 Ud;xnÞ is a rational

function with poles at 71 and at the algebraic singularities xn: The residues at 1 and

�1 are denoted by AðkÞðnÞ and BðkÞðnÞ respectively and may depend on n: The residue

at every xn depends on n and is denoted by C
ðkÞ
n ðnÞ: We then get

Rkðz; nÞ ¼ AðkÞðnÞ
z � 1

þ BðkÞðnÞ
z þ 1

þ
Xp

n¼1

C
ðkÞ
n ðnÞ

z � xn
þ Oð1=z2Þ; as z-N:

The residues AðkÞðnÞ;BðkÞðnÞ and C
ðkÞ
n ðnÞ can be determined in a similar fashion, but

for our purpose it suffices to know R1ðz; nÞ:

5.3. Proof of Theorem 1.1

We are now ready to determine a complete asymptotic expansion of the recurrence
coefficients an and bn: The idea is to insert the asymptotic expansion (5.13) of R into
(5.1) and (5.2).
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Proof of Theorem 1.1. We recall that, see (5.1),

a2
n ¼ lim

z-N

�D2
N

2i
þ zR12ðz; n;wÞ

� 

zR21ðz; n;wÞ þ 1

2iD2
N

� 

:

We may take the limit z-N in the asymptotic expansion (5.13) of R; cf. [16, Section
9], to obtain

a2
nB �D2

N

2i
þ
XN
k¼1

A
ðkÞ
12 ðnÞ þ B

ðkÞ
12 ðnÞ þ

Pp
n¼1 C

ðkÞ
n;12ðnÞ

nk

 !

�
X

N

k¼1

A
ðkÞ
21 ðnÞ þ B

ðkÞ
21 ðnÞ þ

Pp
n¼1 C

ðkÞ
n;21ðnÞ

nk
þ 1

2iD2
N

 !
; ð5:30Þ

as n-N: Expanding this we find a complete asymptotic expansion of a2
n; and this

leads to a complete asymptotic expansion of an in powers of 1=n as n-N: By (5.18),

(5.19), (5.26), (5.28)–(5.30) the first terms in the asymptotic expansion of a2
n are

a2
n ¼ 1

4
þ 1

2i
D�2

N
A

ð1Þ
12 ðnÞ þ B

ð1Þ
12 ðnÞ þ

Xp

n¼1

C
ð1Þ
n;12ðnÞ

 !"

� D2
N

A
ð1Þ
21 ðnÞ þ B

ð1Þ
21 ðnÞ þ

Xp

n¼1

C
ð1Þ
n;21ðnÞ

 !#
1

n
þ O

1

n2

� 


¼ 1

4
�
Xp

n¼1

ln
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q
cos ð2n arccos xn � FnÞ

1

n
þ O

1

n2

� 

; ð5:31Þ

as n-N: From this we then get, after a simple calculation, that the coefficient with
the 1=n term in the asymptotic expansion of an is given by (1.4). So, the statements
about the recurrence coefficient an are proved.

Similarly, we can prove the statements about the recurrence coefficient bn: If we
take in (5.2) the limit z-N in the asymptotic expansion (5.13) of R; cf. [16, Section
9], we find

bnB lim
z-N

�z
XN
k¼1

ðRkÞ11ðz; n þ 1Þ
ðn þ 1Þk

þ
XN
k¼1

ðRkÞ22ðz; nÞ
nk

 !

¼ �
XN
k¼1

A
ðkÞ
11 ðn þ 1Þ þ B

ðkÞ
11 ðn þ 1Þ þ

Pp
n¼1 C

ðkÞ
n;11ðn þ 1Þ

ðn þ 1Þk

 

þ
A

ðkÞ
22 ðnÞ þ B

ðkÞ
22 ðnÞ þ

Pp
n¼1 C

ðkÞ
n;22ðnÞ

nk

!
; ð5:32Þ

as n-N: From this we get a complete asymptotic expansion of bn in powers of 1=n;
and by (5.18), (5.19), (5.26), (5.27) and (5.32) the coefficient with the 1=n term in the
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asymptotic expansion of bn is given by

B1ðnÞ ¼ � ðAð1Þ
11 ðn þ 1Þ þ A

ð1Þ
22 ðnÞÞ � ðBð1Þ

11 ðn þ 1Þ þ B
ð1Þ
22 ðnÞÞ

�
Xp

n¼1

ðCð1Þ
n;11ðn þ 1Þ þ C

ð1Þ
n;22ðnÞÞ

¼ �
Xp

n¼1

ln
2
½sinðð2n þ 1Þ arccos xn � Fn þ arccos xnÞ

� sinðð2n þ 1Þ arccos xn � Fn � arccos xnÞ�

¼ �
Xp

n¼1

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

n

q
cos ðð2n þ 1Þ arccos xn � FnÞ: ð5:33Þ

Therefore, the theorem is proven. &

6. Asymptotics of the orthonormal polynomials

In this section, we determine the asymptotic behavior of the orthonormal
polynomials pn; as n-N; near the algebraic singularities. This will be done by going
back in the series of transformations Y/T/S/R:

Since pn ¼ gnpn; we first want to know the asymptotic behavior of the leading
coefficient gn as n-N: Similar considerations as in [16, proof of Theorem 1.6] show
that

gn ¼ 2nffiffiffi
p

p
DN

ð1 þ Oð1=nÞÞ; as n-N; ð6:1Þ

with an error term that has a full asymptotic expansion in powers of 1=n:
Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let z be in the right upper part of the lens inside the disk Ud;xn

around xn: From (3.1), (3.6), (3.25) and (4.42) we establish that

Y ðzÞ ¼ 2�ns3RðzÞEn;xnðzÞClnðnfxnðzÞÞWxnðzÞ
�s3

� jðzÞ�nsn
1 0

wðzÞ�1jðzÞ�2n 1

� 

jðzÞns3 : ð6:2Þ

Since z is in the right upper part of the lens inside the disk Ud;xn we have WxnðzÞ ¼
wðzÞ1=2e�lnpi; see (4.8). Inserting this into (6.2) we then obtain that the first column of
Y is given by

Y11ðzÞ
Y21ðzÞ

� 

¼ wðzÞ�1=22�ns3RðzÞEn;xnðzÞClnðnfxnðzÞÞelnpis3

1

1

� 

: ð6:3Þ
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For our choice of z we have that 0oarg nfxnðzÞop=4; see Fig. 6. So, we
have to use (4.26) to evaluate ClnðnfxnðzÞÞ: From [1, Formulas 9.1.3 and 9.1.4],
which connect the Hankel functions with the usual J-Bessel functions, we
then have

ClnðnfxnðzÞÞelnpis3
1

1

� 

¼ e�

pi
4
ffiffiffi
p

p
ðnfxnðzÞÞ

1=2
J
lnþ1

2
ðnfxnðzÞÞ

J
ln�1

2
ðnfxnðzÞÞ

0
@

1
A:

Inserting this into (6.3), taking the limit z-xAðxn; xn þ dÞ; and
noting that fxn;þðxÞ ¼ arccos xn � arccos x ¼ yn; which follows from (4.40), we

obtain

Y11ðxÞ
Y21ðxÞ

� 

¼ e�

pi
4
ffiffiffi
p

pffiffiffiffiffiffiffiffiffiffi
wðxÞ

p ðnynÞ1=22�ns3RðxÞEn;xn;þðxÞ
J
lnþ1

2
ðnynÞ

J
ln�1

2
ðnynÞ

0
@

1
A: ð6:4Þ

Now, we want to determine a convenient expression for En;xn;þðxÞ: We have to use

(4.48) and (4.49) to evaluate En;xn;þðxÞ: By (3.18), (5.22) and (5.23), and from the

fact that

Wxn;þðxÞ
DþðxÞ

¼ expðiðcnðxÞ � lnpÞÞ;

see (3.20) and (4.8), we then obtain

En;xn;þðxÞ ¼
e�

pi
4ffiffiffi

2
p

ð1 � x2Þ1=4
Ds3

N

jþðxÞ
1=2

ijþðxÞ
�1=2

�ijþðxÞ
�1=2 jþðxÞ

1=2

 !

� Wxn;þðxÞ
DþðxÞ

� 
s3

e
1
2
lnpis3jþðxnÞns3e�

pi
4
s3

1ffiffiffi
2

p
1 i

i 1

� 


¼ e�
pi
4

2ð1 � x2Þ1=4
Ds3

N

jþðxÞ
1=2

ijþðxÞ
�1=2

�ijþðxÞ
�1=2 jþðxÞ

1=2

 !

� eiðcnðxÞ�
1
2
lnpþn arccos xn�p

4
Þs3

1 i

i 1

� 

:

The latter expression can be written as

En;xn;þðxÞ ¼
e�

pi
4

2ð1 � x2Þ1=4
Ds3

N

eiz1ðxÞ ie�iz1ðxÞ

�ieiz2ðxÞ e�iz2ðxÞ

 !
1 i

i 1

� 


¼ e�
pi
4

ð1 � x2Þ1=4
Ds3

N

i sin z1ðxÞ i cos z1ðxÞ
sin z2ðxÞ cos z2ðxÞ

� 

; ð6:5Þ
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where z1 and z2 are given by (1.14). Inserting this into (6.4) and using the fact that
Y11 ¼ pn; we obtain

pnðxÞ ¼
ffiffiffi
p

p
DN

2n

ðnynÞ1=2ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
ð1 � x2Þ1=4

� R11ðxÞðcos z1ðxÞJln�1
2
ðnynÞ þ sin z1ðxÞJlnþ1

2
ðnynÞÞ

"

� i

D2
N

R12ðxÞðcos z2ðxÞJln�1
2
ðnynÞ þ sin z2ðxÞJlnþ1

2
ðnynÞÞ

#
:

Since pn ¼ gnpn; from (6.1), and from the facts that R11ðxÞ ¼ 1 þ Oð1=nÞ and
R12ðxÞ ¼ Oð1=nÞ as n-N; with error terms that hold uniformly for xAðxn; xn þ dÞ
and that have a full asymptotic expansion in powers of 1=n; the theorem is then
proven. &
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