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Abstract

We study asymptotics of the recurrence coefficients of orthogonal polynomials associated to
the generalized Jacobi weight, which is a weight function with a finite number of algebraic
singularities on [—1, 1]. The recurrence coefficients can be written in terms of the solution of
the corresponding Riemann—Hilbert (RH) problem for orthogonal polynomials. Using the
steepest descent method of Deift and Zhou, we analyze the RH problem, and obtain complete
asymptotic expansions of the recurrence coefficients. We will determine explicitly the order 1/n
terms in the expansions. A critical step in the analysis of the RH problem will be the local
analysis around the algebraic singularities, for which we use Bessel functions of appropriate
order. In addition, the RH approach gives us also strong asymptotics of the orthogonal
polynomials near the algebraic singularities in terms of Bessel functions.
© 2003 Published by Elsevier Inc.
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1. Introduction
We consider the generalized Jacobi weight

w(x) = (1 —x)*(1 4 x)’h(x) f[ Ix —x,[*, for xe(—1,1), (1.1)

v=1
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where p is a fixed number, with
—l<xi<x<--<x,<1, 24> -1,A4#0, o f>—-1,

and with h real analytic and strictly positive on [—1, 1]. The points xi, ..., x, are
called the algebraic singularities of the weight. Throughout the paper we use xo = —1
and x,,1 = 1, for notational convenience. All the moments of w exist so that we have
a sequence of orthogonal polynomials. Denote the nth degree orthonormal
polynomial with respect to the generalized Jacobi weight by p,(z) =7y,2" + -+,
where y,, > 0. These orthonormal polynomials satisfy a three term recurrence relation

Xpu(X) = @ps1Pni1(X) + bupu(X) + anpp-1(x),

and we will investigate the asymptotic behavior of the recurrence coefficients a, and
b, as n— 0. The generalized Jacobi weight has been studied before from other
points of view in [2,10,20,21] among others.

For the pure Jacobi weight (1 — x)*(1 + x)ﬁ exact expressions are known for the
associated recurrence coefficients @, and b, see [4,19]. The asymptotic behavior is
given by

an:%_'—O(l/nz)a anO(l/nz)v as n— oo.

In a previous paper with Kuijlaars et al. [16], we considered the modified Jacobi

weight (1 — x)*(1 + x)Ph(x). There, we were able to obtain complete asymptotic
expansions of the associated recurrence coefficients in powers of 1/n. It turned out
that, as for the pure Jacobi weight, the order 1/n terms in the expansions vanished.
The asymptotic behavior of the recurrence coefficients of orthogonal polynomials
associated to the generalized Jacobi weight (1.1) has been studied before by Golinskii
[13]. He has proven that

an:%—f— O(l/n), b,=0(1/n), asn— 0. (1.2)
In this paper we will give stronger asymptotics. We will prove that the O(1/n)
terms in (1.2) can be developed into complete asymptotic expansions in
powers of 1/n. Here, in contrast with the (modified) Jacobi weight, the order 1/n
terms in the expansions will not vanish and we will determine an explicit expression
for them.

Our approach is based on the characterization of orthogonal polynomials via a
Riemann—Hilbert problem, due to Fokas et al. [11], and on an application of the
steepest descent method for Riemann—Hilbert problems of Deift and Zhou [9]. We
have already applied this technique to the modified Jacobi weight [16], and in our
case, the general scheme is the same. The main difference lies in the fact that we now
have to do a local analysis around the algebraic singularities as well (not just only
around the endpoints + 1), which will be done with (modified) Bessel functions of
appropriate order. In the present paper, we will emphasize the construction of the
local parametrix near the algebraic singularities, which is new. It will turn out that
the order 1/n terms in the expansions of the recurrence coefficients come from this
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parametrix. The RH approach has been applied before to orthogonal polynomials,
see [3,6-8,14-16]. Our result is the following.

Theorem 1.1. The recurrence coefficients a, and b, of orthogonal polynomials

associated to the generalized Jacobi weight (1.1) have a complete asymptotic expansion
of the form

1 e Ak(n) = Bk(n)
an~2+k:l i b > : (1.3)

=~
—

as n— . The coefficients Ay(n) and By(n) are explicitly computable for every k, and
the coefficients with the 1/n term in the expansions are given by

1 P
Ai(n) = -3 Z Jyy/ 1 — x2 cos(2n arccos x, — @,), (1.4)
v=1

p
Bi(n) =— Z Jyy/1 = x2cos((2n + 1) arccos x, — D,), (1.5)

y=1

where
D, <oc—|—) + Z 2/1k>n— (oc—i—ﬁ—i—z 2)k>drccosx»
k=v+1 k=1
7 el
«/ xj'_ logh(t) dt (1.6)
b mt—x‘

The integral in (1.6) is a Cauchy principal value integral.

This theorem shows that n(2a, — 1) and nb, are oscillatory and asymptotically
behave like a superposition of p wave functions A, cos(w,n — ¢,) with amplitudes
A, = —A/1 — x2, frequencies w, = 2arccos x,, and phase shifts ¢, which are
different for n(2a, — 1) and nb,. The amplitude 4, depends on the location and the
strength of the singularity x,, while the frequency w, depends only on the location of
x,. The strengths of the other singularities has influence on the phase shift ¢,. This
discussion shows that the O(1/n) behavior of the recurrence coefficients is intimately
related to the behavior of our weight near the singularities. Note that if we have no
singularities (i.e. 4y = --- = 4, = 0) all the amplitudes in the wave functions vanish.
This implies that the order 1/n terms in the expansions of the recurrence coefficients
vanish, which is in agreement with the case of the modified Jacobi weight [16].

Remark 1.2. We have restricted ourselves to determine only the order 1/n terms in
the expansions of the recurrence coefficients. It is possible to determine the higher-
order terms in the same way if we work hard enough, but the calculations will be a
mess.
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We will now compare our result with a conjecture of Magnus [17] about the
asymptotic behavior of the recurrence coefficients of orthogonal polynomials
associated to the weight

w(x) = {B<1 (140 0 = 9%, for xe(-1,x),

; Al = x)*(1+x)P(x = x)*, for xe(xy, 1), (17)

where A and B are positive constants, with —1 <x; <1, where o, f> — | and where
24> — 1. This weight allows a jump at x;, and is of form (1.1) only if 4 = B. The
conjecture is the following.

Conjecture of Magnus [17]. The recurrence coefficients of orthogonal polynomials
associated to the weight (1.7) satisfy

I M
an =5~ 7005(2?1 arccos x| — 4ulog(4nsin arccos x;) — @) + o(1/n),  (1.8)

2M
by =— TCOS((Zn + 1) arccos x| — 4ulog(4n sin arccos x1) — @) + o(1/n), (1.9)

as n— oco. Here

— ! _1 2 2 2
,u_ﬂlog(B/A), M—E\//l + 12y /1 — X1, (1.10)

O = (ax+ A)w — (¢ + B+ 24) arccos x; — 2arg (A + in) —arg(A +in). (1.11)

We want to show that, as a consequence of Theorem 1.1, the conjecture is true for
the case 4 = B. To this end, we need to reformulate the conjecture for this case. If

A = B we have by (1.10) and (1.11) that u =0, M = (]4]/2),/1 — x?, and

_{(oH—/l)n—(oc+ﬂ+2/1)arccosx1, if >0,
~ (e + ) — (2 + p+24) arccos x; — 3z, if 1<0.

Inserting this into (1.8) and (1.9) the conjecture becomes.

Conjecture of Magnus for the case 4 = B. The recurrence coefficients of orthogonal
polynomials associated to the weight A(1 — x)*(1 + x)|x — x;[** satisfy

1 2 .
=55 1 — x? cos(2n arccos x; — @) + o(1/n),
b, = —%\/1 — x? cos((2n + 1) arccos x| — ®) + o(1/n),

as n— oo, where ® = (a + )m — (o + ff + 22) arccos x;.
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If we apply Theorem 1.1 for the case p = 1 and & = A, and using the fact that, see
[12],
Jcl 1 dr
isai-x
we see that the conjecture is true for the case 4 = B. We even have more since we
were able to obtain complete asymptotic expansions of the recurrence coefficients,
allow the analytic factor /&, and allow more singularities. The full conjecture
(i.e. 4+# B) remains open.
We will also compare our result with Nevai’s result [18] for an even positive weight
p(x)|x[** on [~1,1] with p and p’ continuous and with 24> — 1. Nevai showed in

[18] that the recurrence coefficient a, of orthogonal polynomials associated to this
weight satisfies,

_ 1 n+1 A
a"_2+< 1) 2n+0(l/n), as n— oo. (1.12)
We apply Theorem 1.1 to the weight w(x) = (1 — x2)*h(x)|x|*", with & even. So, w is
of the form of Nevai’s weight. Using the fact that /4 is even and x; = 0, we have

jﬁl logh(t) dt
TV —f2t-x
since the integrand is an odd function. Since p = 1, « = f§, and arccos x; = ©/2 this

implies by (1.6) that the phase constant ®; vanishes. From (1.3) and (1.4) we then
have

=0

1 iy
anzz—i_(_l)ﬁ_ljd‘_a(l/nz)v as n— oo.

This is in agreement with Nevai’s result, see (1.12). The error is stronger since we
have O(1/n?) instead of o(1/n). However, here we are dealing with an even weight of

the form p(x)|x|** with p analytic, and Nevai’s weights also include cases where p is
non-analytic. Nevai also showed that the error is O(1/n?) if p is constant. Note, since
the phase constant @, vanishes, that by (1.5) the order 1/n term in the expansion of
b, vanishes. This is in agreement with the fact that b, = 0 for an even weight.

From our analysis we are also able to determine strong asymptotics of the
orthonormal polynomials p,. In particular we are interested in the asymptotics near
the singularities. The result is the following.

Theorem 1.3. Fix ve{l,...,p}. There exists 0>0 so that for xe (xy,x, + 0)
(n0,)"/2
wx) (1 — x2)1/*4
% [(1+ O(1/m))(cos &y (x)J,

+ O(1/n)(cos {r(x)J,

Pu(x) =

(10)) + 5in 44 (x)J, 4 (0,))

no,))], (1.13)

1
)

(n0,) + sin {H(x)J,

v _% Ay +% (
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as n— oo, with 0, = arccos x, — arccos x, and with J, the usual J-Bessel function of
order v. The error terms hold uniformly for x€ (x,,x, + 0) and have a full asymptotic
expansion in powers of 1/n, which can be calculated explicitly. In (1.13),

1 Ay
(ia(x) = izarccosx—k v, (x) —‘TR—i—narccos Xy —g, (1.14)

where the + holds for {y, the — for {», and where \, is given by

1 4 )4
W (x) = — 3 <o<+ Z 2)vk>7r— <o¢+ﬁ+z2ftk> arccos x
k=v+1 k=1
\/1—x2:[.1 logh(r) dt 15
S RO P (1.15)

The integral in (1.15) is a Cauchy principal value integral.

The present paper is organized as follows. In Section 2 we formulate the theory of
orthogonal polynomials as a RH problem for Y. In Section 3, we do the asymptotic
analysis of this RH problem. There, we want to obtain, via a series of
transformations Y+ 7T+ S+ R, a RH problem for R with a jump matrix close to
the identity matrix. Then, R is also close to the identity matrix. For the last
transformation S+ R we have to do a local analysis near the endpoints and
near the algebraic singularities. The local analysis near the endpoints has
already been done in [16], but near the algebraic singularities it is new and
will be done in Section 4. In Section 5 we determine a complete asymptotic
expansion of the jump matrix for R. As a result, we obtain a complete asymptotic
expansion of R, which will be used to prove Theorem 1.1. In the last section we
determine the asymptotics of the orthonormal polynomials near the algebraic
singularities.

2. RH problem for Y

In this section we will characterize the orthogonal polynomials via a 2 x 2 matrix
valued RH problem. This characterization is due to Fokas et al. [11]. We will also write
down the recurrence coefficients a, and b, in terms of the solution of this RH problem.

We seek a 2 x 2 matrix valued function Y(z) = Y(z;n,w) that satisfies the
following RH problem.

RH problem for Y.

(a) Y(z) is analytic for ze C\[—1, 1].
(b) Y possesses continuous boundary values for xe (-1, I)\{xi, ..., x,} denoted by
Y. (x) and Y_(x), where Y, (x) and Y_(x) denote the limiting values of Y (z’) as
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z' approaches x from above and below, respectively, and

n@:ym@‘?ﬁ,mmaqmmmwm. 2.1)

(c) Y(z) has the following asymptotic behavior at infinity:
0
Y(z) =+ 0O(1/z)) 0 o) as z— 0. (2.2)
z

(d) Y(z) has the following behavior near z = 1:

1 Jz—1J" )
(0] ., il a<O,
1 |z—1|
1 1 -1
Y(z) = 0( oglz '), if o =0, (2.3)
1 loglz—1]
1 1 .
O( >, if >0,
1 1
as z— 1, zeC\[-1,1].
(e) Y(z) has the following behavior near z = —1:
1 1)
of ' FFIY i g0
1 |z+1)
1 1 1
Y(s) = 0< °“Z+'>,ifﬂo, (2.4)
1 log|z+1]
1 1 .
0(1 1), if >0,

as z— — 1, zeC\[-1, 1].

() Y(z) has the following behavior near z = x,, for every v=1, ..., p:
1 — P
0( = x%)’ if 4, <0,
v =g A\ Eow 2.5)
1 1
0( ), if 4,>0,
I 1

as z—Xx,, ze C\[-1,1].

Remark 2.1. The O-terms in (2.3)—(2.5) are to be taken entrywise. So for example

Y(z) = 0(: I::Hz) means that Yy;(z) = O(1), Y12(z) = O(|z — 1]"), etec.
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If we take care of the algebraic singularities x, of the generalized Jacobi weight in
the same way as of the endpoints +1 in [16, Section 2] we obtain the following
theorem.

Theorem 2.2. The RH problem for Y has a unique solution Y (z) = Y (z;n,w) given by,

(s 1ot n,,(x)w(x)d
Y(Z) — n( ) 27'[1.‘/‘71 X —2Zz Y (26)

. U, ()w(x
22 ey (2) _yiflfilwdx

where m, is the monic polynomial of degree n orthogonal with respect to the weight w
and with vy, the leading coefficient of the orthonormal polynomial p,,.

X —2Z

The recurrence coefficients a, and b, can be written in terms of Y, see [5,7,11,16].
It is known [5] that

@ = lim 22 Yy2(z;n,w) Yoy (231, w), (2.7)
Z—> 0
by = lim (z— Y (z;n+ 1,w) Yoo (z;n,w)). (2.8)

Z—> 0

So, in order to determine the asymptotics of the recurrence coefficients, we need to
do an asymptotic analysis of the RH problem for Y.

3. Asymptotic analysis of the RH problem for Y

In this section we will do the asymptotic analysis of the RH problem for Y. The
idea is to obtain, via a series of transformations

Y—>TH—S—R,

a RH problem for R which is normalized at infinity (i.e. R(z)—1I as z— o0) and
whose jump matrix is close to the identity matrix. As a result, the solution of the RH
problem for R is also close to the identity matrix, cf. [5,7].

As mentioned in the introduction, we point out that the asymptotic analysis is
analogous as in the case of the modified Jacobi weight, see [16]. The main differences,
which come from the algebraic singularities, are:

® In every step we have to take care of the growth condition near the algebraic
singularities, which was included in the RH problem for Y to control the behavior
near these points.

® In the second transformation 7'— S the lens will be opened going through the
algebraic singularities.

® We have to do a local analysis around the algebraic singularities, not just only
around the endpoints. This is a new and critical step in the analysis of the RH
problem for Y, and is the most important difference with the case of the modified
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Jacobi weight. To emphasize this, the construction of the parametrix near the
algebraic singularities will be done in a separate section.

3.1. First transformation Y +— T

We will first transform the RH problem for Y into a RH problem for 7" whose
solution is bounded at infinity, and whose jump matrix has oscillatory diagonal
entries. Let ¢(z) =z + (2> — 1)1/2 be the conformal mapping that maps C\[—1, 1]
onto the exterior of the unit circle, and define

T(z) =2""Y(z)p(z) ", for zeC\[-1,1], (3.1)

10

where o3 = (0 71) is the Pauli matrix. With Pauli’s notation x°* we mean

o <x 0 >
x% = ,
0 x!

for some scalar x. Then, T is the unique solution of the following equivalent RH
problem, cf. [16, Section 3].

RH problem for T.

(a) T(z) is analytic for ze C\[-1,1].
(b) T(z) satisfies the following jump relation on (—1, I)\{xi, ..., x,}:

0. (x)7" wlx)

Ti(x) = T(x)( 0 o (x),z,,

), for xe (=1, D\{x1, ...,x,}.  (3.2)

(c) T(z) has the following behavior at infinity:
T(z)=1+40(1/z), asz— . (3.3)

(d) T(z) has the same behavior as Y (z) as z— 1, given by (2.3).

(e) T(z) has the same behavior as Y(z) as z— — 1, given by (2.4).

(f) T(z) has the same behavior as Y(z) as z—x,, given by (2.5), for every
v

Remark 3.1. Condition (c) states that the RH problem for T is normalized at
infinity. Since [¢ .. (x)| = 1 for xe (—1, 1) we have by (3.2) oscillatory diagonal entries
in the jump matrix for 7.

3.2. Second transformation T — S

We use the steepest descent method for RH problems of Deift and Zhou [9] to
remove the oscillatory behavior in (3.2). See [5,8] for an introduction. The idea is to
deform the contour so that the oscillatory diagonal entries in the jump matrix for 7'
are transformed into exponentially decaying off-diagonal entries. We then arrive at
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an equivalent RH problem for S on a lens shaped contour, with jumps that converge
to the identity matrix on the lips of the lens, as n— oo. This step is referred to as the
opening of the lens.

Since 4 is real analytic and strictly positive on [—1, 1], there is a neighborhood U of
[—1,1] so that /& has an analytic continuation to U, and so that the real part of & is
strictly positive on U. Hence, the factor (1 — x)*(1 + x)’i(x) has a non-vanishing
analytic continuation to ze U\((— oo, —1]U|[l, o)), given by

(1 —2)"(1 +2)h(2),

with principal branches of powers.

To continuate the factor |x — x,|** analytically, where ve {1, ..., p}, we divide the
complex plane into two regions, which we denote by K}Cv and K , separated by a
contour I'y, going through x,, see Fig. 1. Here, K;V and K7 are the sets of all points
on the left, respectively right, of I'y,,. We choose the contour I',, so that the images of
'y, nC, and I'y, nC_, under the mapping ¢, are the straight rays, restricted to the
exterior of the unit circle, with arguments arccos x, and —arccos x,, respectively.
Here, C. is used to denote the upper half-plane {z|Im z>0}, and C_ to denote the
lower half-plane {z | Im z<0}. It turns out that 'y, is a hyperbola and goes vertically
through x,. We have made an exact plot of I'y, for the case x, = %, see Fig. 1. For

v=1,...,p, the factor |x — xv\m" has an analytic continuation to ze C\I'y,, given by
(x, —z2)*, for zeK.,
(z —x,)*, for zek} ,

with again principal branches of powers.

2

15F

0.5F

-0.5F

2 I I I I I N I I I
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2

Fig. 1. The contour I'y, for the case x, = % The star marks x,, and K_Lv and K are the sets of all points on
the left, respectively right, of I'y .
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Remark 3.2. It seems a bit awkward to work with this choice of I'y, instead of with
the vertical line going through x,, but in Section 4.2 this will become clear.

As a result, the generalized Jacobi weight w, given by (1.1), has a non-vanishing
analytic continuation to ze U\((— o0, —1]U[l, 0 ) U J_; T'y,]), also denoted by w,
given by

w(z) = (1= 2)*(1 + 2)’h(z)

v P )
X H (z — xp)™™ H (xp— )%, if zek}, mK;M, (3.4)
k=1 I=v+1
where v =0, ...,p, and K} = Ki',,ﬂ =C.

Remark 3.3. Note that only if 4,eN the analytic continuation of our weight is also
analytic across the contour Iy, .

The jump matrix (3.2) for T has the following factorization into a product of three
matrices, based on the fact that ¢ (x)¢_(x) =1 for xe(—1,1),

o, ()" wx) _ ( 1 O) 0 w(x)
0 o _(x) w(x) o (x)7 1 —W(x)_] 0

Coeroutors 1) a9

We note that 1/w does not have an analytic extension to a full neighborhood
of (—1,1). Instead, it has an analytic continuation to a neighborhood of (x,, xy1),
for every v=0,...,p, where xo = —1 and x,;; = 1. We thus transform the RH
problem for T into a RH problem for S with jumps on the oriented contour X,
shown in Fig. 2, that goes through the algebraic singularities x,. The precise form
of the lens £ will be determined in Section 4.2. Of course it will be contained in U.
We write

0 = S\ {=1,x1, ..., xp, 1}

Fig. 2. The contour X.
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Let us define, as in [16, Section 4],

T(z), for z outside the lens,

1 0
T(z)< ) Com ), for z in the upper parts
—w(z)” o(z) 1

S(z) = of the lens, (3.6)

1 0
T(z)< i Zom ), for z in the lower parts
w(z)” o(z) 1

of the lens.

Then, S is the unique solution of the following equivalent RH problem, cf. [16,
Section 4].

RH problem for S.

(a) S(z) is analytic for ze C\Z.
(b) S(z) satisfies the following jump relations on X°,

1 0 .
Si(z) = S(Z)(w(z)_l(p(z)_zn 1), for zeX°n(CLuC_), (3.7)
5.0 =5(9) (_W(Ox)l Wff)) for X% (<1,1). (8)

(c) S(z) has the following behavior at infinity:
S(z)=I+0(1/z), asz—w. (3.9)

(d) For a<0, S(z) has the following behavior as z— 1:
1 |z—1J"

S(z)=0
) (1 Iz 1"
For o = 0, S(z) has the following behavior as z— I:
log|z—1| log|z—1
st —of (o2 1 ozl -1
log|z—1] log|z—1]

), as z—1,zeC\X. (3.10)

>, as z—1,zeC\Z. (3.11)

For >0, S(z) has the following behavior as z— I:

1 1
0(1 1), as z— 1 from outside the lens,
S(Z) = |Z_ ]|70( 1 (312)
0<| 1 1), as z— 1 from inside the lens.
z_

(e) S(z) has the same behavior near —1 if we replace in (3.10)—~(3.12), o« by 8, |z — 1]
by |z + 1| and take the limit z— — | instead of z— 1.
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() Forv=1,...,p, S(z) has the following behavior as z— x,. For 1, <0 we have

1 P
sy =o' F M) aszox,zeCE (3.13)
1|z —x,|™
For 4,>0 we have
I 1 )
0] L1 as z—x, from outside the lens,
S(z) = Yy (3.14)
|z = x| 1 L
0 oy , as z—x, from inside the lens.
|z = x| 1

Since |p(z)|> 1 for ze C\[—1, 1] we see from (3.7) that the oscillatory terms on the
diagonal entries in the jump matrix for 7" have been transformed into exponentially
decaying off-diagonal entries in the jump matrix for S on the lips of the lens. So, the
jump matrix for S converges exponentially fast to the identity matrix on the lips of
the lens, as n— oo. Hence, we expect that the leading order asymptotics are
determined by the solution of the following RH problem.

RH problem for N.

(a) N(z) is analytic for ze C\[-1,1].
(b) N(z) satisfies the following jump relation on the interval (=1, 1)\{x, ..., x,}:

0 w(x)
. . for xe (=1, D)\{xi,...,x,}. (3.15)
(%) 0
(c) N(z) has the following behavior at infinity:
N(z)=I+0(1/z), asz— 0. (3.16)
The solution of the RH problem for N is referred to as the parametrix for the outside

region and it has been solved in [16, Section 5] using the Szegd function associated
with the generalized Jacobi weight w,

=D+ )PP, (z—x)"

v=1

(p(z) (a+ﬁ+2 Z€:1 /1“)/2

< exp ((22 DY Tlogh(x) dx ) (3.17)

D(z) =

27 aV1=—x2z—Xx

The Szegd function D(z) associated to w is analytic and non-zero for ze C\[—1, 1],
satisfies the jump condition D (x)D_(x) = w(x) for xe(—1,1)\{xi,...,x,}, and
D, =lim._, , D(z)e(0,+00). The solution of the RH problem for N is then given
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by, see [16, Section 5],

N(z) = D% 2 2 D(z)™, 3.18
) a(z) —a(z)™" a(z) +a(z)™ g (3.18)
—2i 2
where
B (Z _ 1)1/4
a(z) —4(2_'_ 1)1/4. (3.19)

For later use we have the following lemma.

Lemma 3.4. For every v=20,...,p,

Dy (x) = V/w(x)e ™M for x,<x<xy.1. (3.20)
Here xo = —1, xp41 = 1, and ,, is given by (1.15).

Proof. We rewrite expression (3.17) for the Szegd function as

=D+ D)PIR, (2 —x)™
0(2) (a+p42>70 Ak)/z

D(z) = exp(—i(z2 — 1)20(2)), (3.21)

where

o(z) = 1 /llogh(x) dt

_% 1 171‘2[—2.

Now, we determine D, (x) for xe(xy,x,41). So, we need to take the + boundary
values for all quantities in (3.21). Using the Sokhotskii—Plemelj formula [12, Section
4.2] we have

_ logh(x) L L " logh(r) dt
T2/l 2mit N _pgt—x

where the integral is a Cauchy principal value integral, so that, by (3.21) and the fact
that ¢, (x) = exp(i arccos x), the lemma is proved after an easy calculation. O

D, (x)

Before we can to do the third transformation we have to be careful, since the
jump matrices for S and N are not uniformly close to each other near the
endpoints + 1 and near the algebraic singularities x,. Therefore, a local analysis near
these points is necessary. Near the endpoints this has already been done in [16,
Section 6].
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We have constructed in [16, Section 6] a parametrix P; in the disk Us; with radius
0> 0, sufficiently small, and center 1. This is a matrix valued function in Us, that
has the same jumps as S on X, that matches with N on the boundary
0Us, of Uy,

Pi(z)N'(z) =1+ O(1/n), as n— oo, uniformly for zedUs,, (3.22)

and that has the same behavior as S(z) near z=1. The parametrix P; is
given in [16, Section 6], and is constructed out of Bessel function of order o.
We note that the scalar function W in [16, (6.27)], because of the extra factor

IT_, Ix—x,)* in the generalized Jacobi weight, should have an extra factor

v=1
e (Z—x
Similarly we have constructed in [16, Section 6] a parametrix P_; in the disk U
with radius 6 >0 and center —1. This is a matrix valued function in Us _; that has the

same jumps as S on X, that matches with N on 9Us

)2;,“

P_(z)N7'(z) =1+ O(1/n), as n— oo, uniformly for zedUs_, (3.23)

and that has the same behavior as S(z) near z= —1. The parametrix is
given in [16, Section 6], and is constructed out of Bessel functions of order f.

We note that the scalar function W in [16, (6.52)] should have an extra factor

Dy (n =)™

We also have to construct a local parametrix P, near the algebraic singularities
xy. Let U, be the disk, with center x, and radius 6 >0 so that the closures of the
disks Us .y, .-, Usx,.\ do not intersect and so that all the disks lie in U. The
construction of the parametrix P, will be done in Section 4. For now, let us assume
that we have a 2 x 2 matrix valued function P,, with the same jumps as S, that
matches with N on 9Usj,,

P, (z)N'(z) =TI+ O(1/n), as n— oo, uniformly for zedUj,, (3.24)

and that has the same behavior as S(z) near z = x,.
3.3. Third transformation S+ R

Using the parametrix for the outside region, the parametrices near the endpoints,
and the parametrices near the algebraic singularities we do the final transformation.
Let us define the matrix valued function R as

S(z)N~'(z), for zeC\ (2 V) [pfjl Ua,x‘,] ) :

v=0
S(z)P. ! (z), for zeUs,\E, and v=0,...,p+ L.

Xy

(3.25)

Remark 3.5. Note that the inverses of the parametrices exist. For N, P_; and P; this
was already known, see [16]. In the next section we will show that Py, is also
invertible.
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+ R
HH + +

Fig. 3. The reduced system of contours Xz with circles Us ., of radius ¢ and center x,.
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If we take care of the behavior near the algebraic singularities in the same ;way as
near the endpoints, it turns out that R satisfies the following RH problem, cf. [16,

Section 7], with jumps on the reduced system of contours Xy, see Fig. 3.

RH problem for R.

(a) R(z) is analytic for ze C\Zg.
(b) R(z) satisfies the following jump relations on Xg:

Ri(2) =R-(2)Py,(2)N"'(2),
for zedUs,,, and v=0,...,p+ 1,

R@ =R ENE(, | N6,
for zeXg\ (IOI 8U(5,x‘_>.
v=0

(c) R(z) has the following behavior at infinity:
R(z) =1+ 0(1/z), asz— .

(3.26)

(3.27)

(3.28)

By (3.22)—(3.24), the jump matrices on the circles are uniformly close to the
identity matrix as n— oo. On the lips of the lens we have by (3.27), as in [16, Section
7], that the jump matrix converges uniformly to the identity matrix at an exponential
rate. So, all jump matrices are uniformly close to the identity matrix. This implies

that, cf. [5,7],

R(z) =1+ O(1/n), as n— oo, uniformly for ze C\Zg.

(3.29)

Remark 3.6. We will show in Section 5 that the O(1/n) term in (3.29) can be
developed into a complete asymptotic expansion in powers of 1/n. This expansion

will be used to prove Theorem 1.1.
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4. Parametrix near the algebraic singularity x,

Fix ve{l, ...,p}. In this section we construct a 2 x 2 matrix valued function Py,
that satisfies the following RH problem.

RH problem for P,,.

(a) Py, (z) is defined and analytic for ze Us, »,\X for some Jy> 0.
(b) Py, (z) satisfies the following jump relations on Z°N Us 4,

Pl =P @ e )

for ze(Z°NC1)NUsy,, (4.1)
Pe () =Py (x) 0 w(x)
ot o —wx)"' 0 )
for xe(2°n(—1,1))n Usy,. (4.2)

(c) On OUs, we have, as n—

P, (z)N7'(z) =T+ 0O(1/n), uniformly for zedUs,\Z. (4.3)

(d) For 4,<0, Py, (z) has the following behavior as z— x;:

1 _x, [P
P =of! ¥ |2. . as zox,. (4.4)

1|z — x|

For 4,>0, Py, (z) has the following behavior as z— x,:
11 .
0 1) as z—x, from outside the lens,
P—\'v (Z) = |Z —x |72/1v l (45)
o ! ) , as z—x, from inside the lens.
|z — x| 1

We will work as follows. First, we construct a matrix valued function that satisfies
conditions (a), (b) and (d) of the RH problem for Py,. For this purpose, we will

transform (in Section 4.1) this RH problem into a RH problem for P,(xlv) with constant

jump matrices and construct (in Section 4.2) a solution of the RH problem for val‘,).

Afterwards, we will also consider (in Section 4.3) the matching condition (c) of the
RH problem for P,,.
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4.1. Transformation to a RH problem with constant jump matrices

Since £ is analytic in U with positive real part, the scalar function

v—1

Wi (2) =(1 =22+ 2P0 2 () [T (2 = )™ H (x — 2)"

k=1 I=v+1
{ (z—x,)", for ze(K, nU)\R,
X

, 4.6
(xy —z)", for ze (Ki\ NU)\R, 0

is defined and analytic for ze U\(RUT', ). Here, we recall that le‘, and K7 are the
sets of all points on the left, respectively right, of I'y,. We seek P, in the form

Py, (z) = Epy, (Z)P(l,) @)Wy, (2) Po(z)™", (4.7)

Xy

where the matrix valued function E, ,, is analytic in a neighborhood of Us,,, and
E, ., will be determined (in Section 4.3) so that the matching condition (c) of the RH
problem for P, is satisfied.

Since Py, has jumps on £ Us ,, , and since Wy, has a jump on I'y, n U, the matrix

valued function Pilv) has jumps on the contour

2, = Euly)nUsy,,
see Fig. 4. The contour X, consists of eight parts, which we denote by X, ..., Zg, as
shown in Fig. 4. We write

0 =2 Mx}, and X =Z\{x,}, fork=1,..8.

)

In order to determine the jump matrices for Pg‘ , we need some information about

the scalar function W, . Write
I 11 |
K., =K. nC,, K =K nCy,
I _ gl v _
Kx\, - Kx\, N C*’ va - Kwrc‘ f\@,.

So, the sets K. ,...,K!' divide the complex plane into four regions divided
by the real axis and the contour I'y,. By (3.4) and (4.6), we have for
ze(KI nK! AU,
Xy—1 Xy+1
w(z)e ™ if ze KL O KT,
SORE S 49
- w(z)e™,if ze KJ UK.

Here, we recall that K| = K}%l = C. From this we see that
Wy, +(x) Wy, —(x) = w(x), for xe(x,_1,x,11)\{x}. (4.9)
By (4.6) we have on the contour I'y,,

W o (2)Wy, _(2)" ' =e»™, for zeTy, nU. (4.10)
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Fig. 4. The contour X . Here, £3 UZX; is the part of I'y, in Us,,, and the remainder is the part of X in
Usy, -

We now have enough information about Wy, to determine the jump matrices for chlf.

First, we determine the jump matrix on the lips of the lens. By (4.1), (4.7) and (4.8) the
matrix valued function Pfx{,) should satisfy on X3 U Xy UZ2UX¢ the jump relation

P =P o W@ (e | ) W0l
ﬂg“”(w(zwlwx%‘(z) (1)>
=P _(z) (e izlmv ?) (4.11)
where in e*2%% the + sign holds for ze £ UX] and the — sign for ze X U Y.

Next, we determine the jump matrix on the interval. For xeX{ UZ? we have by
(4.2), (4.7), (4.9), and the fact that ¢_ (x)p_(x) =1,

0 w(x
Pl (x) =P ()W (x) ()7 (_W(x)1 E) )>
X W (0) 0 (1)

_ P(l) (x) 0 W<x) W‘cv,+(x)_l vaﬁ(x)_l
—w(x)”! Wi, () W, —(x) 0

= ngg(x)< 01 ) (4.12)
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And finally, we determine the jump matrix on the contour that goes vertically
through x,. For zeZ{ UZX? we have by (4.7) and (4.10),

PV (2) = PY_ ()W, _(2) " Wy 4 (2)7 = PD_(2)eh7, (4.13)

Xy, —

We then see that we must look for a matrix valued function P&P that satisfies the
following RH problem.

RH problem for Pg).

(a) P(z) is defined and analytic for ze Us, x,\(2UTy,) for some dp>0.
(b) P () satisfies the following jump relations on DI

0 1
PY (x) = PV_(x) ( O 0>, for xeZ0 U, (4.14)
(1) (1) 1 0 0 0
P (2) =P, () o2 1) for zeXJ UZE, (4.15)
PS{L (z) = P&l‘)f ()b for zeXJUXY, (4.16)
(1) (1) 1 0 o o
P, (z)="P,) (2) i 1) for zeXy UZg. (4.17)

(© For 4,<0, P<x1v> (z) has the following behavior as z— x,:

Doy . v
P(l)(Z) — 0<|Z xv| |Z xle >7 as z—x,. (418)

Xy |Z _ xv|lv |Z _ xv|/w

For 4,>0, P&P (z) has the following behavior as z— x,:

|z - xv|)'v |z - Xv\%
0]

; >7 as z—Xx, from

EE

|z — x,
outside the lens,

— o — —
O( |Z XV‘ |Z xvl > , as z—Xx, from inSid€

|z — xvliiv

(4.19)

the lens.

Remark 4.1. Condition (c) follows from condition (d) of the RH problem for P, ,
since

Py, (z) = Epy, (z)P(l)(z) W (2) Zo(z)™",
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VIl

\ VIl

Fig. 5. The contour Zy.

where ¢(z) is bounded and bounded away from 0 near z = x,, and where W, (z)
behaves like ¢|z — xv|i" as z— Xx,, with a non-zero constant c.

4.2. Construction of P,(Y{,)

The construction of chl‘

) is based upon an auxiliary RH problem for ¥, in the (-
plane with jumps on the contour Xy = Ule I'; consisting of eight straight rays,
oriented as in Fig. 5, which divides the complex plane into eight regions I-VIII, also

shown in Fig. 5. We let 2> — 1.

RH problem for V.

(a) W,({) is analytic for {eC\Zy.
(b) W, ({) satisfies the following jump relations on Xy:

0 1
¥+ (0) :\Pi’@)(—l 0), for (el UTs, (4.20)
1 0
Y, .+ () =¥,-(0 (e‘zm | ), for (el uT, (4.21)
W (0) =¥ (0e™,  for (eT3uly, (4.22)

1 0
lP;H_,_(C) = \Pi,—(C) (6,2111‘1 1 ), for Cel]ul"g. (423)
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(c) For 1<0, ¥,({) has the following behavior as {—0:

Ik |(:/“~>
Y () = 0( .|, as (-0
[{a<E

For A>0, ¥;({) has the following behavior as {—0:

R
W, () = SRS

o e

A —2
0<|C| ] ) as (—0 for (e II, III, VI, VII,

) —A
0<|C| |C| )7 as C_>0 for Ce I’IV’ V, VIII

219

(4.24)

(4.25)

We construct a solution ¥, of this RH problem out of the modified Bessel

functions 7;/, and K; 1/, and out of the Hankel functions a\Y

For (e I, we define ¥, ({) by

HY () —iHY ()

1 Aty At oL
Wi =5 vt T 2 e
H l(() —iH l(()
472 2

For (e II, by

1
VRCPL ((Le2)  ——=0"PK ((Le2)
\/;E 13 —5 ATio
‘P)(g) = 1 i : ’
—iyal T (e D) ———('PK (Le2)
) VT 72

For (e III, by

ni 1 T
VallL ((te?)  ——= UK (L)
¥i(0) = I
=2 e U oap -
iv/ng Ii_%(ié’ 2) \/EC Ki_% (Le72)

For (e 1V, by

1 At I N
¥i(0) = 5 va(-0'" 2 2| s
- !
For (e V, by
)] (1)
-H7\(=() —iH (=0
1 P pae I
T)(C) = _\/E(ic)l/Z 2 2 e—(),+4)nm;.
2 Hf_)% (=0) iHii)% (=)

1) and H'

2)
ix1/2

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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For {e VI, by
i B _Lap 3
A I L A

V(0 = e 2, (4.31)

m 1
12y —={'"K,
\/}EC ;L_%(Cez) \/EC é(C 2)
For (e VII, by

ST ((LeS) 0K (D)
l{’;(g) _ +5 \/— )+2 B &2 imm (432)

12 g _Lap g
VAL y(@8) 20K ()
And finally, for {e VIII, we define it by

~iHY () -HP (0

1 It Ity Lo
Y (0) = 3 V(' (1)2 2)2 eHraios (4.33)
() ()
2 2

Theorem 4.2. The matrix valued function ¥, defined by (4.26)—(4.33), is a solution of
the RH problem for V.

. 1 2
Proof. The functions Iiil/ZvKiil/ZvHii)l/z and Hii)l/z

the complex plane with a branch cut along the negative real axis. So, the matrix
valued function ¥, defined by (4.26)—(4.33) is analytic in the respective regions, and
condition (a) of the RH problem is therefore satisfied. Condition (c) follows easily
from [1, Formulas 9.1.9, 9.6.7 and 9.6.9]. So, it remains to prove that jump
conditions (4.20)—(4.23) are satisfied.

Jump conditions (4.20) and (4.22): By inspection, it is easy to see that these jump
conditions are satisfied.

Jump condition (4.21) for {eT'>: We use (4.27) to evaluate ¥, . ({) and (4.26) to
evaluate W, _({). From (4.26) and [1, Formulas 9.1.3, 9.1.4 and 9.6.3], the 1,1-entry
and the 2,1-entry on the right of (4.21) are equal to

are defined and analytic in

V- () + e, 00, (0)
1 oL 1 S
_ Eﬁgl/Zef(M%)mHQ)l(C)+E\/%é/lﬂef(ﬁq)mHjl)l(C)
32 3

_ \/‘v1/2 A+4mJ I(C)
+3
L, .
= VAL (e B)e 3, (4.34)
2



M. Vanlessen | Journal of Approximation Theory 125 (2003) 198-237 221

and

W), JC) +e Y, 5 (0)

_ \/‘CI/z A+4 mH ( )+ \/‘Cl/z /+4 mH( ) )

N\'—‘
I\J\'—‘

_ \/Eél/ze%iﬁ)’”’[_l(()
— Al (e Fye 2, (4.35)

respectively. By (4.27) we then see that the first columns of both sides of (4.21) agree.
From (4.26), (4.27) and [1, Formula 9.6.4], the second columns of both sides of (4.21)
agree as well.

Jump condition (4.21) for {eTs: We use (4.30) to evaluate ¥, ({) and (4.31) to
evaluate ¥, _({). Since —{ = {e™, we have, from (4.31) and [1, Formula 9.6.4], that
the 1,2-entry and the 2,2-entry on the right of (4 21) are equal to

i 1, . ni N
Wi () = —Z=0PAMK (D) = —5 Va0 PH (S, (436)

A+2

and

1 L, i j L
¥ (0) = —ﬁgl/zei K, ) (te2) = %\/;(_g)l/ijlj (~0)e B (4.37)

N|—

respectively. So, by (4.30) we see that the second columns of both sides of (4.21)
agree. Since —{ = {e™ we have, from (4.31), (4.36), (4.37) and [1, Formulas 9.1.3,
9.1.4 and 9.6.3], that the 1,1-entry and the 2,1-entry on the right of (4.21) are equal to

Yo (0) +e M, ()

— VR0 R (0B)  VR(-0) e D ()

s
— —Va(=() ety 20 +3 LR e “4>’”H<+1< )
]
= VRO PP (e (43%)
pre
and
Wi (0) +e AW, 0 (0)
_ —l.\/E(— )1/2 —2/17111 l(Ce%l) _%\/E(_C)I/Ze*(/ﬂri)ni il)l(_C)
2 2
_\/—( )1/2 ’/1+4>7“J 1(_0_%\/;( C)I/Z 7()+4)m (1)](_5)
A*i )
zlﬁ(fC)'/zH 2) (_067(%11)7”‘7 (4.39)

1
2 -



222 M. Vanlessen | Journal of Approximation Theory 125 (2003) 198-237

respectively. By (4.30) we then see that the first columns of both sides of (4.21) agree
as well. We now have proven that jump condition (4.21) is satisfied.

Jump condition (4.23): Similarly, we can prove that this jump condition is also
satisfied. Here, we also use [1, Formula 9.1.35], and the details are left to the reader.
This implies that the theorem is proved. [

Now, we explain how we get PEY{_) out of the solution ¥, (depending on the
parameter A,) of the RH problem for ¥, . We make use of the following scalar
function,

fo(z) = {

which is defined and analytic for zeC\R. For xe(—1,1) we have, since
o (x)p_(x) =1, that f (x) =fy,—(x), so that f, is also analytic across the
interval (—1,1). The behavior of f;, near x, is

, 1
Ve

Since fy, is analytic near x,, and since f”(x,) #0, the scalar function f, is a one-to-
one conformal mapping on a neighborhood of x,. So, if we choose ¢ >0 sufficiently
small, f, is a one-to-one conformal mapping on Us,, and the image of U, under
the mapping { = f,, is convex.

For xe(—1,1) we have by (4.40) that f, (x) = arccos x, — arccos x. So, fy,(x) is
real for xe(—1,1). If x>x, we have f; (x)>0, and if x<x, we have f, (x) <0. Since
fx, is a conformal mapping, this implies that f,, maps Us,, nC, one-to-one onto
S, (Usx,)nCy, and Usy, nC_ one-to-one onto fy, (Usy,)NC_.

We now come back to the special choice of the contour I'y , which we used to
continuate our weight analytically, see Section 3.2. For zel', nC,; we have
arg ¢(z) = arccos x,, by construction of I'y, and for zeT'y, nC_ we have arg ¢(z) =
—arccos x,. By (4.40) we then have Ref. (z) =0, for zeT',,. This implies that the
image of the contour I'y, under the mapping { = f, is the imaginary axis, which
explains our choice of I'y,.

We remember that the contour X, was not yet completely defined. Now, we define
the contours X, UX;UZeUXg as the preimages of the parts of the corresponding
rays I, uTyuTgUTys in fy, (Us.y,) under the mapping { = fy, (z), see Fig. 6. We then
have immediately that we can define

PO (2) =¥, (nfy, (2)), (4.41)

and P&{,) will solve the RH problem for PQ‘,).

ilogp(z) —iloge, (x,), for Imz>0, (4.40)
—ilog o(z) —ilog ¢ (x,), for Imz<0, '

(z—x) + O((z—x,)?), as z—x,.

Remark 4.3. We can use any one-to-one conformal mapping on Us,, to construct

Pf{,) out of ¥, . However, we have to choose it so as to compensate for the factor
@(z)™"? in (4.7). In the next section we will see that our choice of conformal
mapping will do the job.
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fx, (Vo)

3

I, r,

s

Fig. 6. The conformal mapping f;,. For every k = 1, ..., 8, the contour X is mapped onto the part of the
corresponding ray I'y in fy, (Us.y, ).

4.3. Construction of E, .,

We recall that for every matrix valued function E, , analytic in a neighborhood of
Us x,, the matrix valued function Py, given by

Py, (2) = Ens, ()5, (0, (2)) Wy, (2) " 0(2) ™ (4.42)

satisfies conditions (a), (b) and (d) of the RH problem for Py, . In this section we want
to determine E, ., so that the matching condition (c) is satisfied as well. To this end
we need to know the asymptotic behavior of '¥',, at infinity, and use this to determine
E, ... At the end of this section we also show that E,, ,, is analytic in a neighborhood
of Usy,, so that the parametrix P, is completely defined.

In order to determine the asymptotic behavior of ¥, at infinity, we insert the
behavior of the Bessel functions at infinity into the matrix valued function ¥, , given
by (4.26)—(4.33). See [1, Formulas 9.7.1-9.7.4] for the behavior of the modified Bessel
functions at infinity, and [1, Formulas 9.2.7-9.2.10] for the behavior of the Hankel
functions at infinity. Then, a straightforward calculation gives us the asymptotic
behavior of ¥, at infinity. The behavior is different in each quadrant. For the upper
half-plane we find as {— o0,

1 1 —i\[ N\ = . 1,
¥, () =— I+ 0[] |ed e 0B 20 (4.43)
‘ V2\—-i 1 /)| &/
uniformly for { in the first quadrant, and
v, (C) _ L 1 —i -I L0 l ] e%i 036—1‘5(;36% JyTiG3 (4 44)
Ly \/§ —i 1 | ( ] ) .

uniformly for { in the second quadrant. For the lower half-plane we find as {— oo,

w0 =" T 1+ o( L) metmaimo (O 7 (4.45)
Ay _\/Z i 1 | { | 1 0 ) .
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uniformly for { in the third quadrant, and

_ 1 1 —i 1 n—io’; —ila3 —l),\,m‘a_g 0 -1
v, oo ). o

uniformly for { in the fourth quadrant.

Now, we use the asymptotic behavior (4.43)—(4.46) of ¥, at infinity to determine
E, .,. We explain this only for the region dUs mK}cv. The other cases are similar and
the details are left to the reader. For ze 0Us r\Kl,V we have, since f, is a one-to-one
conformal mapping on Us ., that nf, (z) lies in the first quadrant, cf. Fig. 6. So, we
may use (4.43) to evaluate the asymptotic behavior of W, (nfy,(z)) as n— co. Since
Im z>0, we have by (4.40),

n n

e = g, (x) "0
Using (4.42) and (4.43) we then find

PN @) =Eun) s 1)1+ 0(3)]
x ¢ P, (x,) e TAT W, (2) PN (2),

as n— oo, uniformly for ze dUs , mKi,‘, So, in order that the matching condition is
satisfied we define for ze UnK ,

. w1 /1 i
Epy,(2) = N(2) Wy, (2) "2 (x,)' e 4 ﬂzﬁ( i i > . (4.47)

Remark 4.4. With this E, , we see that

v 10wl of)
X 0, (6) " Wi (2) PN (2),

as n— oo, uniformly for ze U, mKiv. Since |@, (x,)| = 1, and since Wy, as well as
all entries of N are bounded and bounded away from 0 on J0Us,,, the matching
condition is satisfied on U, mKi‘_.

Similarly, we use (4.40) and (4.42) together with the asymptotic behavior (4.44)—
(4.46) of ¥, at infinity to determine E, ., in the other regions. Straightforward
calculations then show that we have to define E,  (z) for ze U\(RUT,,) as

1

- A
Enx,(2) = Eu(2)p, (%) e 4 \/Z(i 1), (4.48)

where the matrix valued function E,(z) does not depend on n, is analytic for
ze U\(RuTY,,) and given by

1, .
E\(z) = N(z2) Wy, (2)"e2 "™, for ze UnK], (4.49)
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E,(z) = N(z)W,,(2)7e 34 ™3 for ze Ur\Kg, (4.50)
o 0 1\ 1 1

E\(z) = N(z)W,,(2)” L o) ), for zeUnK", (4.51)
12 0 1 1 JyTiio v

E\(z) = N(2) W, ()" Lo 275 for ze UnKy'. (4.52)

Now, everything is fine, except for the fact that E, y, is analytic in U\(RuT,), but
we want it to be analytic in a full neighborhood of x,. This will be proven in the next
proposition.

Proposition 4.5. The matrix valued function E, ., defined by (4.48)—~(4.52) is analytic in
U\(= 00, xy-1] U [xys1, 0)).

Proof. By (4.48) it suffices to prove that E, is analytic in U\((— o0, x,_1] U [xy11, 0)).
We will check that E, has no jumps on (x,_1,xy+1)\{x,} and (T'y, n U)\{x,}, and in
addition that the isolated singularity of E, at x, is removable. Let (x,_j,x,11) be
oriented from the left to the right, and let I',, n U be oriented so that it points away
from x,, cf. Fig. 4.

For xe(x,_1,x,) we use (4.50) to evaluate E, , (x) and (4.51) to evaluate E, _(x).

From (4.8) we have W, . (x) = w(x )!2ehm and W, —(x) = w(x)l/ze’)"’"". Therefore,
by (3.15), (4.50) and (4.51),

0
Ev#(x) :N(x)( . W(X ) 03/2 oy V03 5= émmm
0

—w(x)~
> mnm;

Hence, E, is analytic across (x,_1,X,). Similarly, we have by (3.15), (4.8), (4.49) and
(4.52) that E, is analytic across (x,, x,+1) as well.

For ze(I'y, nU)NC,: we use (4.50) to evaluate E, . (z) and (4.49) to evaluate
E,_(z). From (4.10) we have W, (z)W,, _(z)"' = ¢”™. Therefore, by (4.49) and
(4.50),

0
—N_ ( ) J3/2 A\mm(

—E.(x).

1 .
E, o (2) =N Wi o (2) e 270

1, .
= Ev,f (2)675 JyTics W»c‘,,f (Z)—m W’c‘,,Jr( )Uz 72 JyTicy
= E"a— (Z)a

so that E, is analytic across (I'y, n U) nC.. Similarly, we have by (4.10), (4.51) and
(4.52) that E, is analytic across (I'y, n U) nC_ as well. We thus have proven that E,
is analytic in U\((— o0, xy_1] U [xy41, 00 ) U {x,}).
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It remains to prove that the isolated singularity of E, at x, is removable. We have
by (3.17) and (4.6) that D(z) behaves like ¢{|z — x,|** and W, (2) like ¢2]z — x,|** as
z—x,, where ¢; and ¢, are non-zero constants. Therefore

Wi (2) D(z)
D(z) W, (2)

=0(1), and =0(1), asz-oux,.

So, by (3.18), each entry of N(z) Wy, (z)”* remains bounded as z— x,. This implies by
(4.49)—(4.52) that each entry of E, remains bounded as z— Xx,, so that the isolated
singularity of E, at x, is removable. Therefore, the proposition is proved. [

This ends the construction of the local parametrix near x,.
We recall that we also wanted the local parametrix P,, to be invertible, see
Remark 3.5. We will show that

det Py = 1. (4.53)

This is analogous as in [16, Section 7] and we will just give a sketch of the proof.
Since E, ., is a product of four matrices all with determinant 1, see (4.48)—(4.52), it
suffices to prove from (4.42) that det'¥;, = 1. Using part (b) of the RH problem for
¥,, we find that det V', is analytic in C\{0}. If we then use the behavior of ¥, near 0
stated in part (c) of the RH problem the isolated singularity of det'¥',, at 0 has to be
removable, so that det'¥,, is an entire function. Using the asymptotics of ¥, at
infinity given by (4.43)—(4.46) we have that det ¥, ({)—1 as {— oo. By Liouville’s
theorem we then have that det ¥, = 1, so that also det P,, = 1.

5. Asymptotics of the recurrence coefficients

In this section we will determine a complete asymptotic expansion of the
recurrence coefficients @, and b, as n— oo. Recall that g, and b, have been
formulated in terms of the solution of the RH problem for Y, see (2.7) and (2.8). The
asymptotic analysis of the RH problem for Y has been done in Section 3, and
unfolding the series of transformations Y+ 7T+ S+ R, see [16, Section 9] for
details, we find

D? 1
ai = :1—i>rrcln (—2—1“ + zRy2(z; n, w)) (szl (zym,w) + @) (5.1)
and
by, = lim (z—zRy(z;n+ 1,w)Ra(z;n,w)). (5.2)
Z— 0

Remark 5.1. We note that, see [16, Lemma 8.3],

||R(z>_1||:0(ﬁ), as n o0, (5.3)
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uniformly for |z|>2, where || -|| is any matrix norm. Inserting this into (5.1) and
(5.2) we find the known asymptotic behavior of the recurrence coefficients, cf. [13],

a=5+0(/n), by=0(1/n), asn-o0.

In the rest of the paper we will develop the O(1/n) terms into complete asymptotic
expansions in powers of 1/n.

In order to determine a complete asymptotic expansion of a, and b, we will work
as follows. In Section 5.1, we will determine a complete asymptotic expansion of the
jump matrix for R in powers of 1/n as n— oo. As a result, we obtain in Section 5.2 a
complete asymptotic expansion of R. The coefficients in this expansion can be
calculated explicitly via residue calculus, and we will determine the order 1/n term.
Finally, in Section 5.3 we will use this to prove Theorem 1.1.

5.1. Asymptotic expansion of A
Denote the jump matrix for R as I + A. Then, from condition (c) of the RH

problem for R,
A(z) = Py, (2)N"'(z) = I, for zedUs,, and v=0,...,p + 1, (5.4)

v

1 0 B p+l1
A(z) N(z)<w(z)_lq)(2)_2” 1>N Y(z) -1, for zezR\<vL_% GUM‘,). (5.5)

In this section we will show that A has an asymptotic expansion in powers of 1/n of
the form

, as n— oo, (5.6)
k=1

uniformly for ze Xg, and we will also determine the coefficients Ax(z,n) explicitly.

Remark 5.2. The n-dependance of the coefficients in the expansion will come from
the factor ¢, (x,)"” in the parametrices near the algebraic singularities x,.

On the lips of the lens, A vanishes at an exponential rate, cf. [16, Section 7]. This
implies for every k,

p+1
Ai(z,n) =0, for zezR\<U aUé,X‘). (5.7)
v=0

On the circles near +1, the asymptotic expansion (5.6) of A is known, see [16,
Section 8]. The restriction of A (-,n) to OUs; _; v AUy is given by [16, (8.5) and (8.6)]
and does not depend on n. It has a meromorphic continuation to Us;, ;U U, for
some dy >0, with poles of order at most [(k 4 1)/2] at + 1. For details we refer to [16,
Section §].
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So, it remains to determine the asymptotic expansion of A on the circles near the
algebraic singularities. Fix ve{l,...,p}. By (4.42), (4.48) and (5.4), we have for
ze 3 U&,xv 5

A(z) :EV(Z)QDJr(xv)M}ei%i 03%( : i )
x W, (nfy,(2)o(2) "W, (2) PN (2) - I (5.8)

Here, the matrix valued function ¥,, is constructed out of Bessel functions, which
have a complete asymptotic expansion at infinity. This implies that ¥, (nfy, (z)) also
has a complete asymptotic expansion as n— oo. Inserting the asymptotic expansions
of the modified Bessel functions at infinity [1, Formulas 9.7.1-9.7.4] into (4.206),
and the asymptotic expansions of the Hankel functions [1, Formulas 9.2.7-9.2.10]

into (4.27), we obtain
! b - i (_l)ksﬂ.k —it) i
%m»—(,>1+ i ity
\/j —i 1 ; 2k+le i(_l)ktlv,k Sk

n—iﬁ; —l/l.m‘rﬁ —ilo
X e4 P2 MM T3 (5.9)

as { — oo, uniformly for { in the first quadrant. Here, the constants s,, x and ¢;, x are
given by

o 1 o o
Sivk = (Av +§, k) + (lv 5 k), Lk = (/Lv +§’k> - (Av _E’k)’ (5.10)

where

(42— 1)(@? —9)... (42 — 2k — 1))

(V7 k) = 22](/(!

For ZE@U@XVHK;V we have, since fy, is a one-to-one conformal mapping on
Us,, that nfy (z) lies in the first quadrant, see Fig. 6. So, we may use (5.9) to
determine the asymptotic expansion of ¥, (nfy,(z)) as n— oo. Since Im z> 0 we have
by (4.40),

n

e @) = ¢ (x,) " (2)".
Therefore, by (5.9),

(5 1) v @

S i* (=1sun —itpx \| = 1,
I+ Vs v 04 03 ® ()C v)7n03 o2 Ao
. +(X ;
1; 2L (2) AR\ i(—1) 15, 4

Shvik

~

as n— oo, uniformly for zedUs , mKiv. Inserting this into (5.8) we have by (4.49),
and the fact that ¢ (x,)" remains bounded and bounded away from 0 as n— o
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(since |§0+(XV)| =1),

0 _ » . ;L. o
- Z 2kHIS, (2 E\(z )§D+(x‘,)"‘73< (=1) i‘,k t ,k>

4 —(=D)"tx Sk
1

x <p+<xv>*"“3E;1<z> = (5.11)

as n— oo, uniformly for zedUs,, mKi,v. Similarly, we find the same asymptotic
expansion on the other regions of OUj; . The details are left to the reader. Thus, for
ze0Us,, the coefficients of the expansion (5.6) for A are given by

i* wor [ (=D i —tix
Ak(zan) :71(Ev(z)@+(xv) 3( ( ) , '

k1S (2) (=Dt sk
X 0. (x,) "E(2). (5.12)

Remark 5.3. These coefficients depend on n through the factors ¢ +(xv)i"“3. Since
lo(xy)] =1, the coefficients A(z,n) remain bounded as n— oo, which is necessary
to get an asymptotic expansion of form (5.6).

We note that /¥ is analytic in C\((— o0, —1]U[1, o)) except for a pole of order k
at x,, see the dlscussmn at the end of Section 4.2. From the proof of Proposition 4.5
and the fact that det E, =1 we have that E, as well as E;l are analytic in
U\((—o0,x,-1]U[Xy+1, 0)). So, the restriction of Ai(-,n) to OUsy, has a
meromorphic continuation to a neighborhood Uy, x, of x, for some dyp>4, with a
pole of order k at x,.

5.2. Asymptotic expansion of R

We recall that A possesses an asymptotic expansion in powers of 1/n of form (5.6)
with oscillatory terms in the expansion. Following the argument that leads to [7,
(4.115)], this implies that R itself possesses an asymptotic expansion in powers of 1/n
given by

0
R(z;n,w)~1 + Z

k=1

Ri(z,n)
e

as n— oo, (5.13)

)

uniformly for ze C\Zg. Here, for every k and n,
P+l
Ry (-,n) is analytic in C\(U 8U(s7x‘>, (5.14)
v=0
and
Ri(z,n) = O(1/z), as z— o0. (5.15)
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The n-dependance in the coefficients Ry (z,n) arises through the oscillatory terms in
the expansion of A.

We will now determine, similar as in [16, Section 8], the coefficient R;(z,n)
explicitly. Expanding the jump relation Ry = R_(I + A), and collecting the terms
with 1/n we have

p+l1
Ry (s,n) — Ry _(s,n) = A(s,n), for se U OUs.y, (5.16)
v=0
which is, together with (5.14) and (5.15) an additive RH problem. This can easily be
solved using the Sokhotskii—Plemelj formula, but in our case we can write down an
explicit solution as follows. Since A;(z,n) is analytic in neighborhoods of z = +1
and z = x, for v=1, ..., p, except for simple poles at those points, see Section 5.1,
we can write

AWM
AN;@::Z_%)+OGL as z— 1,
B
Am;nyzz+f)+oay as z— — 1,
and
cV
Ai(z,n) = z—()?) +0(1), asz-oux,

for certain constant matrices 4 (n), BV (n) and Ci"(n).

Remark 5.4. Since A;(s,n) is independent of n for seUs _; v AUy 1, see Section 5.1,
the residues A1) (n) and B (n) of A(z,n) at z = 1 and z = —1, respectively, are also
independent of n. The n-dependance of the residue C‘(,U(n) at z = x, follows from the
oscillatory terms ¢, (x,)*"” in A;(s,n) near x,, see (5.12).

By inspection we then see that

AWM B r. M P+l
() + () +3 (n)’ for zeC\| U Usy, |,
z—1 z+1 —1 Z— Xy v=0 '
Ri(z,n) = A(1>(7’l) B(])(n) p Cél)(n) A R p+l1 U
z—1 + z+1  Sz-x 1(z,m), for zevL:JO b
(5.17)

satisfies the additive RH problem (5.14)—(5.16). So, we need to determine the

constant matrices A (n), BV (n) and C" (n) for v =1, ..., p. For AD(n) and BV (n)
we have found, see [16, Section 8],

2 1
AW () = 2 1Dﬁ< ?Dﬁ, (5.18)

16 AN A



M. Vanlessen | Journal of Approximation Theory 125 (2003) 198-237 231

4ﬁ2_1 o 1 i —a
B (n) = T Dog(i _I)DOOB, (5.19)

which is clearly independent of n. It remains to determine the residue Cf,l)(n) of
Ai(z,n) atz = x,, forevery v =1, ..., p. Fix ve{l, ..., p}. Since E,(z) and E, !(z) are
analytic in a neighborhood of z = x,, and since

1
o) = /1 _X%z—x +0(1), asz-oux,

we have by (5.10) and (5.12) that the residue Cél)(n) of Ai(z,n) at z=x, is
given by

i wos [ =202 =20, oy
C\(vl)(n) = Z - X%Ev(xv)@+(x1’) 3 ( >(p+(xv) 3Ev l(x")' (520)

2%, 242

We want to simplify this expression. So, we need to find convenient expressions for
E,(x,) and E;!(x,), and substitute these into (5.20). Since E, is analytic near x, we
determine E,(x,) by the following limit:

E/ (x,)= 1l E, = 1 E, .
(X ) rl\\lnle[R{ (X) xlx};rgeR ’+(x)
Here, we take the limit from x to x, on the real axis from the right. The last equality
follows from the fact that E, has no jumps on (x,,x,.1), see Proposition 4.5. From
(3.18) and (4.49) we then find

ai(x)+a(x)" ap(x) —ap(x)

E(x)= lm D7 2 o
e U () —an () () an()”
—2i 2
' B,
« <W)w-,+(x)> ei L-Tcl(i}. (521)
D (x)
The Szegd function satisfies D (x) = \/w(x)e ") for xe (x,, x,,1), see Lemma 3.4,

where ), is given by (1.15). By (4.8) we have W, (x) = /w(x)e ™™ so that by
(1.6) and (1.15)
Wi, +(x) e% I _ it e% Imi -

= e %CD“Z'

li
xlx‘lv;n,%eR D+(x)

Inserting this into (5.21) and using the following identities, which hold for xe (-1, 1),

i

ay(x) +ar ()"

2 = 73—y (5.22)
—ag(x = e‘n_i ] B
a+(X) S ( ) _ \/5(1 _4x2)1/4 l(P+(x) 1/2’ (5.23)
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we then find

_mi 1/2 . ~12
Ev(xv) = et 03 ( (P+(xv) / l(p+(x") / ) ld)v i173.

7D0,
V2(1 =)\ —ig, (x,)”

Taking inverse, we find

_m 1/2 . -1/2

_ e 4 Layioy [ @+ (X) —ip (xy) _

Ev I(X\,) == ﬁ@q’ 193 . + 71/2 + v 1/2 Dw(f}. (525)
\/E(l xv) ’(/’+(xv) (P+(XV)

Now, we insert (5.24) and (5.25) into (5.20). Using the identity ¢, (x,) =
exp(i arccos x,) we then find after a straightforward calculation that the residue
Cgl)(n) of Ai(z,n) at z = x, is given by

(of C,
C\()l)(n) — Do;( .11(”) \,12(”) )Dvﬂ’ (526)
"\ GCoa(n) —Con(n) .

where

1 1
Coa(n) = ) ifxv + 5 v sin(2n arccos x, — ®,), (5.27)

Ci2(n) = % }vf — %)vvxv sin(2n arccos x, — ®,)

— %)M /1 — x2 cos(2n arccos x, — @y), (5.28)

Coi(n) = % }3 — %)v‘,xv sin(2n arccos x, — ®,)

+ %AM /1 — x2 cos(2n arccos x, — @,). (5.29)

This ends the determination of R;(z,n).

For general k, we get that Ri(z,n) in the region C\( v:é Usy,) Is a rational
function with poles at +1 and at the algebraic singularities x,. The residues at 1 and
—1 are denoted by 4%)(n) and B*) (n) respectively and may depend on . The residue
at every x, depends on n and is denoted by ctt (n). We then get

AD@)  BOm) s P (n)

~v \" 2
z—1 z+1 +Z Z—XV—FO(I/Z)’ e

Ri(z,n) =

v=1
The residues A®) (n), B%) (n) and ct (n) can be determined in a similar fashion, but
for our purpose it suffices to know R;(z,n).

5.3. Proof of Theorem 1.1

We are now ready to determine a complete asymptotic expansion of the recurrence
coefficients a, and b,. The idea is to insert the asymptotic expansion (5.13) of R into
(5.1) and (5.2).
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Proof of Theorem 1.1. We recall that, see (5.1),

D? L
ai = lim (_2—Iw + ZR12<Z; n, W)) (ZR21 (Z; n, W) + 2lD2:>o> '

Z— 0

We may take the limit z— oo in the asymptotic expansion (5.13) of R, cf. [16, Section
9], to obtain

© () *®) (1
a2~< D22?+2A ()JFBlz(’)Zk ot G ))

k)
(Zkl 21()+321()+Z v21 )+ .1 )7 (530)

nk 2iD?%,

as n— oo. Expanding this we find a complete asymptotic expansion of @2, and this
leads to a complete asymptotic expansion of a, in powers of 1 /nasn— 0. By (5.18),
(5.19), (5.26), (5.28)—(5.30) the first terms in the asymptotic expansion of a> are

a, =

1 _
"= D002<A<>( +Blz +Z Cv12 >
- D?, < n)+ B (n +ZC B )
L, 1 1
- — x2 — _
g 2\/1 x2 cos (2n arccos x, — CD‘,)n—f—O(nz), (5.31)

as n— oo. From this we then get, after a simple calculation, that the coefficient with
the 1/n term in the asymptotic expansion of a, is given by (1.4). So, the statements
about the recurrence coefficient @, are proved.

Similarly, we can prove the statements about the recurrence coefficient b,. If we
take in (5.2) the limit z— oo in the asymptotic expansion (5.13) of R, cf. [16, Section
9], we find

o lim s (R (zn+1) G (Ri)nlzn)
by zlingo (kz: (n+l)k +kz:; pr2 )

-
:_i<A<1/?(n+])+B(ll(n+ )+ \'11(’7"‘])
(n+1)k

k=1

+A““( n) + B () + 0, ) (n ))7

1

2 +

4>|~

g (5.32)

as n— oo. From this we get a complete asymptotic expansion of b, in powers of 1/n,
and by (5.18), (5.19), (5.26), (5.27) and (5.32) the coefficient with the 1/ term in the
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asymptotic expansion of b, is given by
1 1 1 1
Bi(n) = — (A} (n + 1) + Ay (m)) = (B (n+ 1) + By (n))

(€ +1) + )

M=

1

" [sin((2n + 1) arccos x, — @, + arccos x,)

Il

|
-
| >

— Sin

—~

(2n + 1) arccos x, — @, — arccos x, )]

Jyy/1 = x2cos ((2n+ 1) arccos x, — D,). (5.33)

I
M=

v=1

Therefore, the theorem is proven. [

6. Asymptotics of the orthonormal polynomials

In this section, we determine the asymptotic behavior of the orthonormal
polynomials p,, as n— oo, near the algebraic singularities. This will be done by going
back in the series of transformations Y+ 7+ S+ R.

Since p, = y,m,, we first want to know the asymptotic behavior of the leading
coefficient y, as n— co. Similar considerations as in [16, proof of Theorem 1.6] show
that

n

yn:\/iDoo

with an error term that has a full asymptotic expansion in powers of 1/n.
Now, we are ready to prove Theorem 1.3.

(1+0(1/n)), asn— oo, (6.1)

Proof of Theorem 1.3. Let z be in the right upper part of the lens inside the disk Us .,
around x,. From (3.1), (3.6), (3.25) and (4.42) we establish that

Y(2) =27"" R(2) By, (2) W2, (W, (2)) W, (2)

—noy, 1 0 no3
<o (e, ©2)

Since z is in the right upper part of the lens inside the disk Uj,, we have W, (z) =
w(z) 12 g=iymi , see (4.8). Inserting this into (6.2) we then obtain that the first column of
Y is given by

Yll(z) — w(z —1/2~—nao; z a2 Z JyTiG3 1
(1) = e 22 R By 00t 0 | ) (63)
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For our choice of z we have that O<argnfy (z)<n/4, see Fig. 6. So, we
have to use (4.26) to evaluate V¥, (nfy, (z)). From [1, Formulas 9.1.3 and 9.1.4],
which connect the Hankel functions with the usual J-Bessel functions, we
then have

Ay +§

T, 4 ()

' 1 i s J l(nfx“(z))
L f e () = e Vlor )" .

Inserting this into (6.3), taking the limit z—xe(x,,x,+J), and
noting that f;, 4(x) = arccos x, — arccos x = 0,, which follows from (4.40), we

obtain
(n0,)
o) | (6.4)

( Y]](X)) _ e_%ﬁ

Y21(x) w(x)

Now, we want to determine a convenient expression for E, y, 4 (x). We have to use
(4.48) and (4.49) to evaluate E,, +(x). By (3.18), (5.22) and (5.23), and from the
fact that

Wx\v#(x)
D (x)

J
v+

(né)v)1/22—”53R(X)Enyxh+(x) (J
Ay—

(S E S

= exp(i(,(x) — 4m)),
see (3.20) and (4.8), we then obtain
e o4 - 0, ()" i, (x)7?
n,xv,+(x) - —]/4 [s] . —-1/2 1/2
—ip,(x) ¢, (x)

y (7) 0-36%/1\-”[63@ (xv)n@e—%io'_gi 1 l
D, (x) A V2\i 1
670@< 0. (x)" i@dﬂ'”>
o0

2(1 _x2)1/4 _l.(p+(x)71/2 q)Jr(x)l/Z
« ei(l//v(x)f% AyTt+n arccos x\,f%)a_g ( 1 > )
i1

The latter expression can be written as

e,%" S0 jemili(x) 1 i
- 03
Er,’xv’_‘_(x) —2(1 _ x2)1/4 Doe <_iei£2(«‘€) e*l‘CZ(X) ( I 1 )
e 4 Do (isin (i(x) icos{(x) )

(1—x2)* "7 \sin{y(x)  cos{p(x) (6.3)
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where {; and {, are given by (1.14). Inserting this into (6.4) and using the fact that
Y1 = n,, we obtain

VD, (n0,)"?
2 w() (1 =)

T (x) =

[ Riu(x)(eos £y ()7, 1 (n0) +siny(x)7, ) (06.)

v

1
Y72

— L Rp(x)(cos t(x)J

1
2 =
D Ay 2

(n0,) + sin {5 (x)J, 1(nb,))].

)~\'+§

Since p, = y,m,, from (6.1), and from the facts that Ry;(x) =1+ O(1/n) and
Ri2(x) = O(1/n) as n— oo, with error terms that hold uniformly for x e (x,,x, + 0)
and that have a full asymptotic expansion in powers of 1/n, the theorem is then
proven. [l
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